Date: Thursday 19th January 2023 Time:14:00-15:30 GMT | 15:00-16:30 CET Speakers: Deepak Parashar (University of Warwick), Nicole Krämer (Boehringer Ingelheim) and Guillaume Desachy (AstraZeneca).
Who is this event intended for? Everybody interested to learn more about the importance of biomarkers in clinical development. What is the benefit of attending? Attendees will be able to contribute to the discussion on how to improve clinical development using biomarkers.
Registration
This event is free to attend, for both Members and Non-Members of PSI.
To register your place for this event, please click here.
Overview
In this webinar, you will learn more about recent advances in biomarker-based designs, machine learning for biomarkers and data repositories for biomarker use cases.
This webinar is organized by the PSI Biomarkers SIG.
Presentation 1: Enrichment designs with predictive biomarkers
Most biomarker-driven trial designs are based on the assumption that the biomarker is predictive of response to treatment.
Would you rather verify this assumption during the trial?
If so, which population and subpopulations would you test?
What regulatory issues might you encounter?
How would you setup your hypotheses?
At the PSI Biomarkers SIG, we are addressing these issues within the setting of adaptive enrichment designs for Phase II trials in oncology.
Presentation 2: Who said Machine Learning for Biomarkers?
What do you expect from an inspiring presentation on Machine Learning for Biomarkers?
1. Excitement, because you have learned about all the sophisticated Machine Learning methods out there?
2. Being impressed by success stories on Machine Learning & biomarkers?
3. Actionable guidance so that you can incorporate Machine Learning for Biomarkers into your own work?
We, the PSI Biomarkers SIG, want to give it a try and share our thoughts on the past, present and future of Machine Learning for Biomarkers with you.
Presentation 3: But where is the data?
You've discovered this cool new Machine Learning technique but have no data to try it on?
Or you have heard of a new groundbreaking kind of biomarkers?
Or you are like: it is time for me to get my hands dirty with RNA-seq data!
We’ve all been in such situations but then comes the harsh reality: finding publicly available biomarkers data is hard. Finding publicly available biomarkers data along with corresponding treatment response is even harder.
Changing this was the motivation of the PSI Biomarkers SIG to have a focus on data repositories.
During this presentation, we will share with you the fruit of this work!
Speaker details
Speaker
Biography
Deepak Parashar
Deepak Parashar is an Associate Professor at the University of Warwick, with research interests at the interface of mathematics, statistics, and cancer research. He studied for BSc (Honours) and MSc Physics from Delhi, Master of Advanced Study in Mathematics from Cambridge, and obtained a PhD in Mathematics from Aberdeen.
Deepak has been the lead statistician on numerous real-world clinical studies, clinical trials in cancer, with extensive statistical work on NHS datasets for survival studies. He has developed statistical methodology for personalised medicine in cancer, in particular, biomarker-guided adaptive designs, master protocols, addressing issues such as control of false positive error rates and treatment heterogeneity. His current research includes using real-world evidence in clinical trials, subgroup identification methods and novel trial designs, quantitative decision-making, and geometric representations of multidimensional clinical trial data. Deepak has held research positions in Leipzig, Swansea, Rome, Bonn, Cambridge, and is a Turing Fellow at The Alan Turing Institute for Data Science and Artificial Intelligence.
Nicole Krämer
Nicole Krämer is a Senior Principal Statistician at Boehringer Ingelheim in Biberach, Germany. As a member of the Therapeutic Area & Methodology Statistics Group, she supports clinical development teams on strategy and methodology for biomarker analysis, translational medicine and early clinical development. Leveraging the power of biomarkers using Data Science is a very rewarding experience for Nicole. She uses her skills to drive forward early endpoint development, subgroup identification and dose optimization.
Nicole received her PhD in Machine Learning in 2006. Together with Guillaume Desachy, she chairs the EFSPI/PSI Biomarkers Special Interest Group. She is also a member of the EFSPI/PSI Subgroups Special Interest Group.
Guillaume Desachy
Since graduating from ENSAI (Biostatistics M. Sc.) 10 years ago, Guillaume has been immersing himself in precision medicine.
Data-driven, he is passionate about answering scientific questions and making sure we convey the right message to stakeholders, both internally & externally.
He feels very fortunate to have had the chance to work with various kinds of OMICs data and leverage the power of biomarkers to strengthen drug development.
He also feels incredibly lucky to have worked in a diverse set of settings, be it in academia (UCSF, U.S.), in a biotech (Enterome, France) or in the pharmaceutical industry (BMS, Servier & AstraZeneca, France & Sweden). He now works as a Statistical Science Director for AstraZeneca in Gothenburg, Sweden.
Apart from his day job at AstraZeneca, Guillaume teaches a course about OMICs data analysis at ENSAI (www.ensai.fr), is actively involved in the ENSAI alumni association (www.ensai.org) and is a mentor for Article 1, a non-profit organization promoting equal opportunity (https://article-1.eu/) and together with Nicole Krämer, he leads the EFSPI/PSI Biomarkers Special Interest Group (here is their podcast on the topic: https://bit.ly/3rqtA4I).
Whether it is to discuss about statistics, choices that you are making in your early career or any other subject, you can contact him via LinkedIn (https://www.linkedin.com/in/guillaume-desachy/).
Scientific Meetings
PSI Biomarkers SIG Webinar: Biomarkers in Clinical Development
Date: Thursday 19th January 2023 Time:14:00-15:30 GMT | 15:00-16:30 CET Speakers: Deepak Parashar (University of Warwick), Nicole Krämer (Boehringer Ingelheim) and Guillaume Desachy (AstraZeneca).
Who is this event intended for? Everybody interested to learn more about the importance of biomarkers in clinical development. What is the benefit of attending? Attendees will be able to contribute to the discussion on how to improve clinical development using biomarkers.
Registration
This event is free to attend, for both Members and Non-Members of PSI.
To register your place for this event, please click here.
Overview
In this webinar, you will learn more about recent advances in biomarker-based designs, machine learning for biomarkers and data repositories for biomarker use cases.
This webinar is organized by the PSI Biomarkers SIG.
Presentation 1: Enrichment designs with predictive biomarkers
Most biomarker-driven trial designs are based on the assumption that the biomarker is predictive of response to treatment.
Would you rather verify this assumption during the trial?
If so, which population and subpopulations would you test?
What regulatory issues might you encounter?
How would you setup your hypotheses?
At the PSI Biomarkers SIG, we are addressing these issues within the setting of adaptive enrichment designs for Phase II trials in oncology.
Presentation 2: Who said Machine Learning for Biomarkers?
What do you expect from an inspiring presentation on Machine Learning for Biomarkers?
1. Excitement, because you have learned about all the sophisticated Machine Learning methods out there?
2. Being impressed by success stories on Machine Learning & biomarkers?
3. Actionable guidance so that you can incorporate Machine Learning for Biomarkers into your own work?
We, the PSI Biomarkers SIG, want to give it a try and share our thoughts on the past, present and future of Machine Learning for Biomarkers with you.
Presentation 3: But where is the data?
You've discovered this cool new Machine Learning technique but have no data to try it on?
Or you have heard of a new groundbreaking kind of biomarkers?
Or you are like: it is time for me to get my hands dirty with RNA-seq data!
We’ve all been in such situations but then comes the harsh reality: finding publicly available biomarkers data is hard. Finding publicly available biomarkers data along with corresponding treatment response is even harder.
Changing this was the motivation of the PSI Biomarkers SIG to have a focus on data repositories.
During this presentation, we will share with you the fruit of this work!
Speaker details
Speaker
Biography
Deepak Parashar
Deepak Parashar is an Associate Professor at the University of Warwick, with research interests at the interface of mathematics, statistics, and cancer research. He studied for BSc (Honours) and MSc Physics from Delhi, Master of Advanced Study in Mathematics from Cambridge, and obtained a PhD in Mathematics from Aberdeen.
Deepak has been the lead statistician on numerous real-world clinical studies, clinical trials in cancer, with extensive statistical work on NHS datasets for survival studies. He has developed statistical methodology for personalised medicine in cancer, in particular, biomarker-guided adaptive designs, master protocols, addressing issues such as control of false positive error rates and treatment heterogeneity. His current research includes using real-world evidence in clinical trials, subgroup identification methods and novel trial designs, quantitative decision-making, and geometric representations of multidimensional clinical trial data. Deepak has held research positions in Leipzig, Swansea, Rome, Bonn, Cambridge, and is a Turing Fellow at The Alan Turing Institute for Data Science and Artificial Intelligence.
Nicole Krämer
Nicole Krämer is a Senior Principal Statistician at Boehringer Ingelheim in Biberach, Germany. As a member of the Therapeutic Area & Methodology Statistics Group, she supports clinical development teams on strategy and methodology for biomarker analysis, translational medicine and early clinical development. Leveraging the power of biomarkers using Data Science is a very rewarding experience for Nicole. She uses her skills to drive forward early endpoint development, subgroup identification and dose optimization.
Nicole received her PhD in Machine Learning in 2006. Together with Guillaume Desachy, she chairs the EFSPI/PSI Biomarkers Special Interest Group. She is also a member of the EFSPI/PSI Subgroups Special Interest Group.
Guillaume Desachy
Since graduating from ENSAI (Biostatistics M. Sc.) 10 years ago, Guillaume has been immersing himself in precision medicine.
Data-driven, he is passionate about answering scientific questions and making sure we convey the right message to stakeholders, both internally & externally.
He feels very fortunate to have had the chance to work with various kinds of OMICs data and leverage the power of biomarkers to strengthen drug development.
He also feels incredibly lucky to have worked in a diverse set of settings, be it in academia (UCSF, U.S.), in a biotech (Enterome, France) or in the pharmaceutical industry (BMS, Servier & AstraZeneca, France & Sweden). He now works as a Statistical Science Director for AstraZeneca in Gothenburg, Sweden.
Apart from his day job at AstraZeneca, Guillaume teaches a course about OMICs data analysis at ENSAI (www.ensai.fr), is actively involved in the ENSAI alumni association (www.ensai.org) and is a mentor for Article 1, a non-profit organization promoting equal opportunity (https://article-1.eu/) and together with Nicole Krämer, he leads the EFSPI/PSI Biomarkers Special Interest Group (here is their podcast on the topic: https://bit.ly/3rqtA4I).
Whether it is to discuss about statistics, choices that you are making in your early career or any other subject, you can contact him via LinkedIn (https://www.linkedin.com/in/guillaume-desachy/).
Training Courses
PSI Biomarkers SIG Webinar: Biomarkers in Clinical Development
Date: Thursday 19th January 2023 Time:14:00-15:30 GMT | 15:00-16:30 CET Speakers: Deepak Parashar (University of Warwick), Nicole Krämer (Boehringer Ingelheim) and Guillaume Desachy (AstraZeneca).
Who is this event intended for? Everybody interested to learn more about the importance of biomarkers in clinical development. What is the benefit of attending? Attendees will be able to contribute to the discussion on how to improve clinical development using biomarkers.
Registration
This event is free to attend, for both Members and Non-Members of PSI.
To register your place for this event, please click here.
Overview
In this webinar, you will learn more about recent advances in biomarker-based designs, machine learning for biomarkers and data repositories for biomarker use cases.
This webinar is organized by the PSI Biomarkers SIG.
Presentation 1: Enrichment designs with predictive biomarkers
Most biomarker-driven trial designs are based on the assumption that the biomarker is predictive of response to treatment.
Would you rather verify this assumption during the trial?
If so, which population and subpopulations would you test?
What regulatory issues might you encounter?
How would you setup your hypotheses?
At the PSI Biomarkers SIG, we are addressing these issues within the setting of adaptive enrichment designs for Phase II trials in oncology.
Presentation 2: Who said Machine Learning for Biomarkers?
What do you expect from an inspiring presentation on Machine Learning for Biomarkers?
1. Excitement, because you have learned about all the sophisticated Machine Learning methods out there?
2. Being impressed by success stories on Machine Learning & biomarkers?
3. Actionable guidance so that you can incorporate Machine Learning for Biomarkers into your own work?
We, the PSI Biomarkers SIG, want to give it a try and share our thoughts on the past, present and future of Machine Learning for Biomarkers with you.
Presentation 3: But where is the data?
You've discovered this cool new Machine Learning technique but have no data to try it on?
Or you have heard of a new groundbreaking kind of biomarkers?
Or you are like: it is time for me to get my hands dirty with RNA-seq data!
We’ve all been in such situations but then comes the harsh reality: finding publicly available biomarkers data is hard. Finding publicly available biomarkers data along with corresponding treatment response is even harder.
Changing this was the motivation of the PSI Biomarkers SIG to have a focus on data repositories.
During this presentation, we will share with you the fruit of this work!
Speaker details
Speaker
Biography
Deepak Parashar
Deepak Parashar is an Associate Professor at the University of Warwick, with research interests at the interface of mathematics, statistics, and cancer research. He studied for BSc (Honours) and MSc Physics from Delhi, Master of Advanced Study in Mathematics from Cambridge, and obtained a PhD in Mathematics from Aberdeen.
Deepak has been the lead statistician on numerous real-world clinical studies, clinical trials in cancer, with extensive statistical work on NHS datasets for survival studies. He has developed statistical methodology for personalised medicine in cancer, in particular, biomarker-guided adaptive designs, master protocols, addressing issues such as control of false positive error rates and treatment heterogeneity. His current research includes using real-world evidence in clinical trials, subgroup identification methods and novel trial designs, quantitative decision-making, and geometric representations of multidimensional clinical trial data. Deepak has held research positions in Leipzig, Swansea, Rome, Bonn, Cambridge, and is a Turing Fellow at The Alan Turing Institute for Data Science and Artificial Intelligence.
Nicole Krämer
Nicole Krämer is a Senior Principal Statistician at Boehringer Ingelheim in Biberach, Germany. As a member of the Therapeutic Area & Methodology Statistics Group, she supports clinical development teams on strategy and methodology for biomarker analysis, translational medicine and early clinical development. Leveraging the power of biomarkers using Data Science is a very rewarding experience for Nicole. She uses her skills to drive forward early endpoint development, subgroup identification and dose optimization.
Nicole received her PhD in Machine Learning in 2006. Together with Guillaume Desachy, she chairs the EFSPI/PSI Biomarkers Special Interest Group. She is also a member of the EFSPI/PSI Subgroups Special Interest Group.
Guillaume Desachy
Since graduating from ENSAI (Biostatistics M. Sc.) 10 years ago, Guillaume has been immersing himself in precision medicine.
Data-driven, he is passionate about answering scientific questions and making sure we convey the right message to stakeholders, both internally & externally.
He feels very fortunate to have had the chance to work with various kinds of OMICs data and leverage the power of biomarkers to strengthen drug development.
He also feels incredibly lucky to have worked in a diverse set of settings, be it in academia (UCSF, U.S.), in a biotech (Enterome, France) or in the pharmaceutical industry (BMS, Servier & AstraZeneca, France & Sweden). He now works as a Statistical Science Director for AstraZeneca in Gothenburg, Sweden.
Apart from his day job at AstraZeneca, Guillaume teaches a course about OMICs data analysis at ENSAI (www.ensai.fr), is actively involved in the ENSAI alumni association (www.ensai.org) and is a mentor for Article 1, a non-profit organization promoting equal opportunity (https://article-1.eu/) and together with Nicole Krämer, he leads the EFSPI/PSI Biomarkers Special Interest Group (here is their podcast on the topic: https://bit.ly/3rqtA4I).
Whether it is to discuss about statistics, choices that you are making in your early career or any other subject, you can contact him via LinkedIn (https://www.linkedin.com/in/guillaume-desachy/).
Journal Club
PSI Biomarkers SIG Webinar: Biomarkers in Clinical Development
Date: Thursday 19th January 2023 Time:14:00-15:30 GMT | 15:00-16:30 CET Speakers: Deepak Parashar (University of Warwick), Nicole Krämer (Boehringer Ingelheim) and Guillaume Desachy (AstraZeneca).
Who is this event intended for? Everybody interested to learn more about the importance of biomarkers in clinical development. What is the benefit of attending? Attendees will be able to contribute to the discussion on how to improve clinical development using biomarkers.
Registration
This event is free to attend, for both Members and Non-Members of PSI.
To register your place for this event, please click here.
Overview
In this webinar, you will learn more about recent advances in biomarker-based designs, machine learning for biomarkers and data repositories for biomarker use cases.
This webinar is organized by the PSI Biomarkers SIG.
Presentation 1: Enrichment designs with predictive biomarkers
Most biomarker-driven trial designs are based on the assumption that the biomarker is predictive of response to treatment.
Would you rather verify this assumption during the trial?
If so, which population and subpopulations would you test?
What regulatory issues might you encounter?
How would you setup your hypotheses?
At the PSI Biomarkers SIG, we are addressing these issues within the setting of adaptive enrichment designs for Phase II trials in oncology.
Presentation 2: Who said Machine Learning for Biomarkers?
What do you expect from an inspiring presentation on Machine Learning for Biomarkers?
1. Excitement, because you have learned about all the sophisticated Machine Learning methods out there?
2. Being impressed by success stories on Machine Learning & biomarkers?
3. Actionable guidance so that you can incorporate Machine Learning for Biomarkers into your own work?
We, the PSI Biomarkers SIG, want to give it a try and share our thoughts on the past, present and future of Machine Learning for Biomarkers with you.
Presentation 3: But where is the data?
You've discovered this cool new Machine Learning technique but have no data to try it on?
Or you have heard of a new groundbreaking kind of biomarkers?
Or you are like: it is time for me to get my hands dirty with RNA-seq data!
We’ve all been in such situations but then comes the harsh reality: finding publicly available biomarkers data is hard. Finding publicly available biomarkers data along with corresponding treatment response is even harder.
Changing this was the motivation of the PSI Biomarkers SIG to have a focus on data repositories.
During this presentation, we will share with you the fruit of this work!
Speaker details
Speaker
Biography
Deepak Parashar
Deepak Parashar is an Associate Professor at the University of Warwick, with research interests at the interface of mathematics, statistics, and cancer research. He studied for BSc (Honours) and MSc Physics from Delhi, Master of Advanced Study in Mathematics from Cambridge, and obtained a PhD in Mathematics from Aberdeen.
Deepak has been the lead statistician on numerous real-world clinical studies, clinical trials in cancer, with extensive statistical work on NHS datasets for survival studies. He has developed statistical methodology for personalised medicine in cancer, in particular, biomarker-guided adaptive designs, master protocols, addressing issues such as control of false positive error rates and treatment heterogeneity. His current research includes using real-world evidence in clinical trials, subgroup identification methods and novel trial designs, quantitative decision-making, and geometric representations of multidimensional clinical trial data. Deepak has held research positions in Leipzig, Swansea, Rome, Bonn, Cambridge, and is a Turing Fellow at The Alan Turing Institute for Data Science and Artificial Intelligence.
Nicole Krämer
Nicole Krämer is a Senior Principal Statistician at Boehringer Ingelheim in Biberach, Germany. As a member of the Therapeutic Area & Methodology Statistics Group, she supports clinical development teams on strategy and methodology for biomarker analysis, translational medicine and early clinical development. Leveraging the power of biomarkers using Data Science is a very rewarding experience for Nicole. She uses her skills to drive forward early endpoint development, subgroup identification and dose optimization.
Nicole received her PhD in Machine Learning in 2006. Together with Guillaume Desachy, she chairs the EFSPI/PSI Biomarkers Special Interest Group. She is also a member of the EFSPI/PSI Subgroups Special Interest Group.
Guillaume Desachy
Since graduating from ENSAI (Biostatistics M. Sc.) 10 years ago, Guillaume has been immersing himself in precision medicine.
Data-driven, he is passionate about answering scientific questions and making sure we convey the right message to stakeholders, both internally & externally.
He feels very fortunate to have had the chance to work with various kinds of OMICs data and leverage the power of biomarkers to strengthen drug development.
He also feels incredibly lucky to have worked in a diverse set of settings, be it in academia (UCSF, U.S.), in a biotech (Enterome, France) or in the pharmaceutical industry (BMS, Servier & AstraZeneca, France & Sweden). He now works as a Statistical Science Director for AstraZeneca in Gothenburg, Sweden.
Apart from his day job at AstraZeneca, Guillaume teaches a course about OMICs data analysis at ENSAI (www.ensai.fr), is actively involved in the ENSAI alumni association (www.ensai.org) and is a mentor for Article 1, a non-profit organization promoting equal opportunity (https://article-1.eu/) and together with Nicole Krämer, he leads the EFSPI/PSI Biomarkers Special Interest Group (here is their podcast on the topic: https://bit.ly/3rqtA4I).
Whether it is to discuss about statistics, choices that you are making in your early career or any other subject, you can contact him via LinkedIn (https://www.linkedin.com/in/guillaume-desachy/).
Webinars
PSI Biomarkers SIG Webinar: Biomarkers in Clinical Development
Date: Thursday 19th January 2023 Time:14:00-15:30 GMT | 15:00-16:30 CET Speakers: Deepak Parashar (University of Warwick), Nicole Krämer (Boehringer Ingelheim) and Guillaume Desachy (AstraZeneca).
Who is this event intended for? Everybody interested to learn more about the importance of biomarkers in clinical development. What is the benefit of attending? Attendees will be able to contribute to the discussion on how to improve clinical development using biomarkers.
Registration
This event is free to attend, for both Members and Non-Members of PSI.
To register your place for this event, please click here.
Overview
In this webinar, you will learn more about recent advances in biomarker-based designs, machine learning for biomarkers and data repositories for biomarker use cases.
This webinar is organized by the PSI Biomarkers SIG.
Presentation 1: Enrichment designs with predictive biomarkers
Most biomarker-driven trial designs are based on the assumption that the biomarker is predictive of response to treatment.
Would you rather verify this assumption during the trial?
If so, which population and subpopulations would you test?
What regulatory issues might you encounter?
How would you setup your hypotheses?
At the PSI Biomarkers SIG, we are addressing these issues within the setting of adaptive enrichment designs for Phase II trials in oncology.
Presentation 2: Who said Machine Learning for Biomarkers?
What do you expect from an inspiring presentation on Machine Learning for Biomarkers?
1. Excitement, because you have learned about all the sophisticated Machine Learning methods out there?
2. Being impressed by success stories on Machine Learning & biomarkers?
3. Actionable guidance so that you can incorporate Machine Learning for Biomarkers into your own work?
We, the PSI Biomarkers SIG, want to give it a try and share our thoughts on the past, present and future of Machine Learning for Biomarkers with you.
Presentation 3: But where is the data?
You've discovered this cool new Machine Learning technique but have no data to try it on?
Or you have heard of a new groundbreaking kind of biomarkers?
Or you are like: it is time for me to get my hands dirty with RNA-seq data!
We’ve all been in such situations but then comes the harsh reality: finding publicly available biomarkers data is hard. Finding publicly available biomarkers data along with corresponding treatment response is even harder.
Changing this was the motivation of the PSI Biomarkers SIG to have a focus on data repositories.
During this presentation, we will share with you the fruit of this work!
Speaker details
Speaker
Biography
Deepak Parashar
Deepak Parashar is an Associate Professor at the University of Warwick, with research interests at the interface of mathematics, statistics, and cancer research. He studied for BSc (Honours) and MSc Physics from Delhi, Master of Advanced Study in Mathematics from Cambridge, and obtained a PhD in Mathematics from Aberdeen.
Deepak has been the lead statistician on numerous real-world clinical studies, clinical trials in cancer, with extensive statistical work on NHS datasets for survival studies. He has developed statistical methodology for personalised medicine in cancer, in particular, biomarker-guided adaptive designs, master protocols, addressing issues such as control of false positive error rates and treatment heterogeneity. His current research includes using real-world evidence in clinical trials, subgroup identification methods and novel trial designs, quantitative decision-making, and geometric representations of multidimensional clinical trial data. Deepak has held research positions in Leipzig, Swansea, Rome, Bonn, Cambridge, and is a Turing Fellow at The Alan Turing Institute for Data Science and Artificial Intelligence.
Nicole Krämer
Nicole Krämer is a Senior Principal Statistician at Boehringer Ingelheim in Biberach, Germany. As a member of the Therapeutic Area & Methodology Statistics Group, she supports clinical development teams on strategy and methodology for biomarker analysis, translational medicine and early clinical development. Leveraging the power of biomarkers using Data Science is a very rewarding experience for Nicole. She uses her skills to drive forward early endpoint development, subgroup identification and dose optimization.
Nicole received her PhD in Machine Learning in 2006. Together with Guillaume Desachy, she chairs the EFSPI/PSI Biomarkers Special Interest Group. She is also a member of the EFSPI/PSI Subgroups Special Interest Group.
Guillaume Desachy
Since graduating from ENSAI (Biostatistics M. Sc.) 10 years ago, Guillaume has been immersing himself in precision medicine.
Data-driven, he is passionate about answering scientific questions and making sure we convey the right message to stakeholders, both internally & externally.
He feels very fortunate to have had the chance to work with various kinds of OMICs data and leverage the power of biomarkers to strengthen drug development.
He also feels incredibly lucky to have worked in a diverse set of settings, be it in academia (UCSF, U.S.), in a biotech (Enterome, France) or in the pharmaceutical industry (BMS, Servier & AstraZeneca, France & Sweden). He now works as a Statistical Science Director for AstraZeneca in Gothenburg, Sweden.
Apart from his day job at AstraZeneca, Guillaume teaches a course about OMICs data analysis at ENSAI (www.ensai.fr), is actively involved in the ENSAI alumni association (www.ensai.org) and is a mentor for Article 1, a non-profit organization promoting equal opportunity (https://article-1.eu/) and together with Nicole Krämer, he leads the EFSPI/PSI Biomarkers Special Interest Group (here is their podcast on the topic: https://bit.ly/3rqtA4I).
Whether it is to discuss about statistics, choices that you are making in your early career or any other subject, you can contact him via LinkedIn (https://www.linkedin.com/in/guillaume-desachy/).
Careers Meetings
PSI Biomarkers SIG Webinar: Biomarkers in Clinical Development
Date: Thursday 19th January 2023 Time:14:00-15:30 GMT | 15:00-16:30 CET Speakers: Deepak Parashar (University of Warwick), Nicole Krämer (Boehringer Ingelheim) and Guillaume Desachy (AstraZeneca).
Who is this event intended for? Everybody interested to learn more about the importance of biomarkers in clinical development. What is the benefit of attending? Attendees will be able to contribute to the discussion on how to improve clinical development using biomarkers.
Registration
This event is free to attend, for both Members and Non-Members of PSI.
To register your place for this event, please click here.
Overview
In this webinar, you will learn more about recent advances in biomarker-based designs, machine learning for biomarkers and data repositories for biomarker use cases.
This webinar is organized by the PSI Biomarkers SIG.
Presentation 1: Enrichment designs with predictive biomarkers
Most biomarker-driven trial designs are based on the assumption that the biomarker is predictive of response to treatment.
Would you rather verify this assumption during the trial?
If so, which population and subpopulations would you test?
What regulatory issues might you encounter?
How would you setup your hypotheses?
At the PSI Biomarkers SIG, we are addressing these issues within the setting of adaptive enrichment designs for Phase II trials in oncology.
Presentation 2: Who said Machine Learning for Biomarkers?
What do you expect from an inspiring presentation on Machine Learning for Biomarkers?
1. Excitement, because you have learned about all the sophisticated Machine Learning methods out there?
2. Being impressed by success stories on Machine Learning & biomarkers?
3. Actionable guidance so that you can incorporate Machine Learning for Biomarkers into your own work?
We, the PSI Biomarkers SIG, want to give it a try and share our thoughts on the past, present and future of Machine Learning for Biomarkers with you.
Presentation 3: But where is the data?
You've discovered this cool new Machine Learning technique but have no data to try it on?
Or you have heard of a new groundbreaking kind of biomarkers?
Or you are like: it is time for me to get my hands dirty with RNA-seq data!
We’ve all been in such situations but then comes the harsh reality: finding publicly available biomarkers data is hard. Finding publicly available biomarkers data along with corresponding treatment response is even harder.
Changing this was the motivation of the PSI Biomarkers SIG to have a focus on data repositories.
During this presentation, we will share with you the fruit of this work!
Speaker details
Speaker
Biography
Deepak Parashar
Deepak Parashar is an Associate Professor at the University of Warwick, with research interests at the interface of mathematics, statistics, and cancer research. He studied for BSc (Honours) and MSc Physics from Delhi, Master of Advanced Study in Mathematics from Cambridge, and obtained a PhD in Mathematics from Aberdeen.
Deepak has been the lead statistician on numerous real-world clinical studies, clinical trials in cancer, with extensive statistical work on NHS datasets for survival studies. He has developed statistical methodology for personalised medicine in cancer, in particular, biomarker-guided adaptive designs, master protocols, addressing issues such as control of false positive error rates and treatment heterogeneity. His current research includes using real-world evidence in clinical trials, subgroup identification methods and novel trial designs, quantitative decision-making, and geometric representations of multidimensional clinical trial data. Deepak has held research positions in Leipzig, Swansea, Rome, Bonn, Cambridge, and is a Turing Fellow at The Alan Turing Institute for Data Science and Artificial Intelligence.
Nicole Krämer
Nicole Krämer is a Senior Principal Statistician at Boehringer Ingelheim in Biberach, Germany. As a member of the Therapeutic Area & Methodology Statistics Group, she supports clinical development teams on strategy and methodology for biomarker analysis, translational medicine and early clinical development. Leveraging the power of biomarkers using Data Science is a very rewarding experience for Nicole. She uses her skills to drive forward early endpoint development, subgroup identification and dose optimization.
Nicole received her PhD in Machine Learning in 2006. Together with Guillaume Desachy, she chairs the EFSPI/PSI Biomarkers Special Interest Group. She is also a member of the EFSPI/PSI Subgroups Special Interest Group.
Guillaume Desachy
Since graduating from ENSAI (Biostatistics M. Sc.) 10 years ago, Guillaume has been immersing himself in precision medicine.
Data-driven, he is passionate about answering scientific questions and making sure we convey the right message to stakeholders, both internally & externally.
He feels very fortunate to have had the chance to work with various kinds of OMICs data and leverage the power of biomarkers to strengthen drug development.
He also feels incredibly lucky to have worked in a diverse set of settings, be it in academia (UCSF, U.S.), in a biotech (Enterome, France) or in the pharmaceutical industry (BMS, Servier & AstraZeneca, France & Sweden). He now works as a Statistical Science Director for AstraZeneca in Gothenburg, Sweden.
Apart from his day job at AstraZeneca, Guillaume teaches a course about OMICs data analysis at ENSAI (www.ensai.fr), is actively involved in the ENSAI alumni association (www.ensai.org) and is a mentor for Article 1, a non-profit organization promoting equal opportunity (https://article-1.eu/) and together with Nicole Krämer, he leads the EFSPI/PSI Biomarkers Special Interest Group (here is their podcast on the topic: https://bit.ly/3rqtA4I).
Whether it is to discuss about statistics, choices that you are making in your early career or any other subject, you can contact him via LinkedIn (https://www.linkedin.com/in/guillaume-desachy/).
Upcoming Events
Joint PSI/EFSPI Visualisation SIG 'Wonderful Wednesday' Webinars
Our monthly webinar explores examples of innovative data visualisations relevant to our day to day work. Each month a new dataset is provided from a clinical trial or other relevant example, and participants are invited to submit a graphic that communicates interesting and relevant characteristics of the data.
PSI Book Club - The Art of Explanation: How to Communicate with Clarity and Confidence
Develop your non-technical skills by reading The Art of Explanation by Ros Atkins and joining the Sept-Dec 2025 book club. You will be invited to join facilitated discussions of the concepts and ideas and apply skills from the book in-between sessions.
This course is aimed at biostatisticians with no or some pediatric drug development experience who are interested to further their understanding. We will give you an introduction to the pediatric drug development landscape. This will include identifying the key regulations and processes governing pediatric development, a discussion on the needs and challenges when conducting pediatric research and a focus on the ways to overcome these challenges from a statistical perspective.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
Pre-Clinical SIG Webinar: AI agents for drug discovery and development
AI agents are large language models equipped with tools that can autonomously tackle challenging tasks. This talk will explore how generative AI agents can enable biomedical discovery.
EFSPI/PSI Causal Inference SIG Webinar: Instrumental Variable Methods
The webinar is targeted at statisticians working in the pharmaceutical industry, and the objective is to 1) provide a basic understanding of IV methodology including how it relates to causal inference, and 2) present two inspirational pharma-relevant applications.
The Pre-Clinical Special Interest Group (SIG) Workshop 2025 will take place over two half-days on 7 - 8 October in Verona, Italy, bringing together experts from industry, academia, and regulatory institutions to discuss key challenges and innovations in pre-clinical research.
PSI Training Course: Introduction to Machine Learning
Four sessions will include ML foundation (including an introduction, data exploration for ML and dimensionality reduction and feature selection), Supervised learning (including support vector machines and model evaluation and interpretation), model optimization and unsupervised learning (including clustering) and advanced topics (including neural networks, deep learning and large language models).
The program will feature insightful sessions led by distinguished invited speakers, alongside a poster session showcasing the latest advancements in the field. Further details will be provided.
Date: 19 November 2025
This event is aimed at students with an interest in the field of Medical Statistics, for example within pharmaceuticals, healthcare and/or medical research.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
Associate Director Biostatistics in Early Development - Novartis
As an Associate Director Biostatistics Early Development, you will be a key member of our biostatistics group, you will play a crucial role in the design, analysis, and interpretation of clinical trials for early development programs.
Associate Director Biostatistics, Real World Data - Novartis
If you are passionate about biostatistics and real-world data, and are looking for an exciting opportunity to contribute to groundbreaking research, we encourage you to apply.
Are you passionate about making a difference in the world of healthcare? Novartis is seeking a dynamic and experienced professional to join our team in London at The Westworks.
Director of HTA Biostatistics & Medical Affairs - Novartis
As the Director of HTA Biostatistics & Medical Affairs, you will play a pivotal role in shaping the future of healthcare by providing strategic biostatistical leadership and expertise.
As a Senior Principal Biostatistician, you will be responsible and accountable for all statistical work, both scientific and operational, for one or more assigned clinical trials