Matthew Clark, Scientific Services, R&D Solutions, Elsevier, Philadelphia, USA & Thomas Steger-Hartmann, Investigational Toxicology, Bayer AG, Berlin, Germany
Abstract:
Attrition of drug candidates in clinical trials due to safety issues still contributes to a significant part of project closures besides other reasons such as the lack of efficacy, PK issues or strategic reasons. While failure of a candidate during preclinical development is a reflection of the primary task of the functions involved in this phase (i.e. toxicology, safety pharmacology and DMPK), failures during the later clinical phases often raise the question whether the preclinical safety studies are sufficiently predictive for the human outcome. Due to the fact that the First-in-Man study requires pivotal animal studies normally performed in two species, the focus of analysis of the debated predictivity centers around these animal studies. After the seminal study from Olson et al. (2000) numerous publications have shown that animal toxicity studies are predictive to a certain extent and that the predictivity varies among endpoints, some of them such as hematological, gastrointestinal, and cardiovascular events being better predicted than others (e.g. cutaneous adverse events). Most of these analyses compared the preclinical – clinical correlation for a rather limited set of compounds (<150) or for specific field of indications. The authors will present the results of this purely statistical approach based on data available for 3290 compounds in the commercial database Pharmapendium. The work provides answers to the implication of an observation in an animal for human risk and more specifically to the question whether concordance, i.e. the translatability of an observation from animal to human is dependent on the animal species. The statistical methods and procedures will be described in detail.
Registration:
Registration has now closed.
Scientific Meetings
How Well do Toxicology Studies Predict Clinical Safety Outcome? – A Translational Safety Big Data Analysis
Matthew Clark, Scientific Services, R&D Solutions, Elsevier, Philadelphia, USA & Thomas Steger-Hartmann, Investigational Toxicology, Bayer AG, Berlin, Germany
Abstract:
Attrition of drug candidates in clinical trials due to safety issues still contributes to a significant part of project closures besides other reasons such as the lack of efficacy, PK issues or strategic reasons. While failure of a candidate during preclinical development is a reflection of the primary task of the functions involved in this phase (i.e. toxicology, safety pharmacology and DMPK), failures during the later clinical phases often raise the question whether the preclinical safety studies are sufficiently predictive for the human outcome. Due to the fact that the First-in-Man study requires pivotal animal studies normally performed in two species, the focus of analysis of the debated predictivity centers around these animal studies. After the seminal study from Olson et al. (2000) numerous publications have shown that animal toxicity studies are predictive to a certain extent and that the predictivity varies among endpoints, some of them such as hematological, gastrointestinal, and cardiovascular events being better predicted than others (e.g. cutaneous adverse events). Most of these analyses compared the preclinical – clinical correlation for a rather limited set of compounds (<150) or for specific field of indications. The authors will present the results of this purely statistical approach based on data available for 3290 compounds in the commercial database Pharmapendium. The work provides answers to the implication of an observation in an animal for human risk and more specifically to the question whether concordance, i.e. the translatability of an observation from animal to human is dependent on the animal species. The statistical methods and procedures will be described in detail.
Registration:
Registration has now closed.
Training Courses
How Well do Toxicology Studies Predict Clinical Safety Outcome? – A Translational Safety Big Data Analysis
Matthew Clark, Scientific Services, R&D Solutions, Elsevier, Philadelphia, USA & Thomas Steger-Hartmann, Investigational Toxicology, Bayer AG, Berlin, Germany
Abstract:
Attrition of drug candidates in clinical trials due to safety issues still contributes to a significant part of project closures besides other reasons such as the lack of efficacy, PK issues or strategic reasons. While failure of a candidate during preclinical development is a reflection of the primary task of the functions involved in this phase (i.e. toxicology, safety pharmacology and DMPK), failures during the later clinical phases often raise the question whether the preclinical safety studies are sufficiently predictive for the human outcome. Due to the fact that the First-in-Man study requires pivotal animal studies normally performed in two species, the focus of analysis of the debated predictivity centers around these animal studies. After the seminal study from Olson et al. (2000) numerous publications have shown that animal toxicity studies are predictive to a certain extent and that the predictivity varies among endpoints, some of them such as hematological, gastrointestinal, and cardiovascular events being better predicted than others (e.g. cutaneous adverse events). Most of these analyses compared the preclinical – clinical correlation for a rather limited set of compounds (<150) or for specific field of indications. The authors will present the results of this purely statistical approach based on data available for 3290 compounds in the commercial database Pharmapendium. The work provides answers to the implication of an observation in an animal for human risk and more specifically to the question whether concordance, i.e. the translatability of an observation from animal to human is dependent on the animal species. The statistical methods and procedures will be described in detail.
Registration:
Registration has now closed.
Journal Club
How Well do Toxicology Studies Predict Clinical Safety Outcome? – A Translational Safety Big Data Analysis
Matthew Clark, Scientific Services, R&D Solutions, Elsevier, Philadelphia, USA & Thomas Steger-Hartmann, Investigational Toxicology, Bayer AG, Berlin, Germany
Abstract:
Attrition of drug candidates in clinical trials due to safety issues still contributes to a significant part of project closures besides other reasons such as the lack of efficacy, PK issues or strategic reasons. While failure of a candidate during preclinical development is a reflection of the primary task of the functions involved in this phase (i.e. toxicology, safety pharmacology and DMPK), failures during the later clinical phases often raise the question whether the preclinical safety studies are sufficiently predictive for the human outcome. Due to the fact that the First-in-Man study requires pivotal animal studies normally performed in two species, the focus of analysis of the debated predictivity centers around these animal studies. After the seminal study from Olson et al. (2000) numerous publications have shown that animal toxicity studies are predictive to a certain extent and that the predictivity varies among endpoints, some of them such as hematological, gastrointestinal, and cardiovascular events being better predicted than others (e.g. cutaneous adverse events). Most of these analyses compared the preclinical – clinical correlation for a rather limited set of compounds (<150) or for specific field of indications. The authors will present the results of this purely statistical approach based on data available for 3290 compounds in the commercial database Pharmapendium. The work provides answers to the implication of an observation in an animal for human risk and more specifically to the question whether concordance, i.e. the translatability of an observation from animal to human is dependent on the animal species. The statistical methods and procedures will be described in detail.
Registration:
Registration has now closed.
Webinars
How Well do Toxicology Studies Predict Clinical Safety Outcome? – A Translational Safety Big Data Analysis
Matthew Clark, Scientific Services, R&D Solutions, Elsevier, Philadelphia, USA & Thomas Steger-Hartmann, Investigational Toxicology, Bayer AG, Berlin, Germany
Abstract:
Attrition of drug candidates in clinical trials due to safety issues still contributes to a significant part of project closures besides other reasons such as the lack of efficacy, PK issues or strategic reasons. While failure of a candidate during preclinical development is a reflection of the primary task of the functions involved in this phase (i.e. toxicology, safety pharmacology and DMPK), failures during the later clinical phases often raise the question whether the preclinical safety studies are sufficiently predictive for the human outcome. Due to the fact that the First-in-Man study requires pivotal animal studies normally performed in two species, the focus of analysis of the debated predictivity centers around these animal studies. After the seminal study from Olson et al. (2000) numerous publications have shown that animal toxicity studies are predictive to a certain extent and that the predictivity varies among endpoints, some of them such as hematological, gastrointestinal, and cardiovascular events being better predicted than others (e.g. cutaneous adverse events). Most of these analyses compared the preclinical – clinical correlation for a rather limited set of compounds (<150) or for specific field of indications. The authors will present the results of this purely statistical approach based on data available for 3290 compounds in the commercial database Pharmapendium. The work provides answers to the implication of an observation in an animal for human risk and more specifically to the question whether concordance, i.e. the translatability of an observation from animal to human is dependent on the animal species. The statistical methods and procedures will be described in detail.
Registration:
Registration has now closed.
Careers Meetings
How Well do Toxicology Studies Predict Clinical Safety Outcome? – A Translational Safety Big Data Analysis
Matthew Clark, Scientific Services, R&D Solutions, Elsevier, Philadelphia, USA & Thomas Steger-Hartmann, Investigational Toxicology, Bayer AG, Berlin, Germany
Abstract:
Attrition of drug candidates in clinical trials due to safety issues still contributes to a significant part of project closures besides other reasons such as the lack of efficacy, PK issues or strategic reasons. While failure of a candidate during preclinical development is a reflection of the primary task of the functions involved in this phase (i.e. toxicology, safety pharmacology and DMPK), failures during the later clinical phases often raise the question whether the preclinical safety studies are sufficiently predictive for the human outcome. Due to the fact that the First-in-Man study requires pivotal animal studies normally performed in two species, the focus of analysis of the debated predictivity centers around these animal studies. After the seminal study from Olson et al. (2000) numerous publications have shown that animal toxicity studies are predictive to a certain extent and that the predictivity varies among endpoints, some of them such as hematological, gastrointestinal, and cardiovascular events being better predicted than others (e.g. cutaneous adverse events). Most of these analyses compared the preclinical – clinical correlation for a rather limited set of compounds (<150) or for specific field of indications. The authors will present the results of this purely statistical approach based on data available for 3290 compounds in the commercial database Pharmapendium. The work provides answers to the implication of an observation in an animal for human risk and more specifically to the question whether concordance, i.e. the translatability of an observation from animal to human is dependent on the animal species. The statistical methods and procedures will be described in detail.
Registration:
Registration has now closed.
Upcoming Events
PSI Mentoring 2025
Date: Ongoing 6 month cycle beginning late April/early May 2024
Are you a member of PSI looking to further your career or help develop others - why not sign up to the PSI Mentoring scheme? You can expand your network, improve your leadership skills and learn from more senior colleagues in the industry.
PSI Training Course: Mixed Models and Repeated Measures
This course is presented through lectures and practical sessions using SAS code. It is suitable for statisticians working on clinical trials, who already have a good understanding of linear and generalised linear models.
Joint PSI/EFSPI Visualisation SIG 'Wonderful Wednesday' Webinars
Our monthly webinar explores examples of innovative data visualisations relevant to our day to day work. Each month a new dataset is provided from a clinical trial or other relevant example, and participants are invited to submit a graphic that communicates interesting and relevant characteristics of the data.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This is an interactive online training workshop providing an in-depth review of the estimand framework as laid out by ICH E9(R1) addendum with inputs from estimand experts, case studies, quizzes and opportunity for discussions. You will develop an estimand in a therapeutic area of interest to your company. In an online break-out room, you will join a series of team discussions to implement the estimand framework in a case study, aligning estimands, design, conduct, analysis, (assumptions + sensitivity analyses) to the clinical objective and therapeutic setting.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.