U.S. regulatory considerations and case studies for rare diseases
In this talk, I will present an overview of the U.S. Food and Drug Administration’s policies and practices for encouraging development of products for rare diseases and of evaluating clinical evidence for the safety and effectiveness of such products. I’ll discuss study designs that may be particularly appropriate for rare disease product development, and address some of their statistical implications. Finally, I’ll present case studies of products that were approved for rare diseases using unusual or innovative study designs and/or regulatory pathways.
John Scott is Deputy Director of the Division of Biostatistics in the FDA's Center for Biologics Evaluation and Research, where he has also served as a statistical reviewer for blood products and for cellular, tissue and gene therapies. Prior to joining the FDA in 2008, he worked in psychiatric clinical trials at the University of Pittsburgh Medical Center and did neuroimaging research with the Neurostatistics Laboratory at McClean Hospital, Harvard Medical School. He has authored or co-authored numerous articles in areas including Bayesian and adaptive clinical trial design and analysis, drug and vaccine safety, data and text mining, and benefit-risk assessment. He holds a Ph.D. in Biostatistics from the University of Pittsburgh and an M.A. in Mathematics from Washington University in St. Louis, and is an associate editor of the journal, Pharmaceutical Statistics.
Bayesian methods for the design and interpretation of clinical trials in rare diseases
For studies in rare diseases, the sample size needed to meet a conventional frequentist power requirement can be daunting, even if patients are to be recruited over several years. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose Bayesian approaches for the conduct of rare disease trials comparing an experimental treatment with a control when the primary endpoint is binary or normally distributed. We describe processes which can be used to systematically elicit from clinicians opinions on treatment efficacy in order to establish Bayesian priors for unknown model parameters. The proposed approaches are illustrated by describing applications to two Bayesian randomised controlled trials, namely a study in childhood polyarteritis nodosa and a study in chronic recurrent multifocal osteomyelitis. Once prior distributions have been established, consideration of the extent to which opinion can be changed, even by the best feasible design, can help to determine whether a small trial is worthwhile.
Lisa Hampson is a Lecturer in Statistics at Lancaster University. Her research interests are in clinical trials, including group sequential tests and Bayesian methods for trials in rare diseases and dose-escalation. Her recent research has focused on developing methods for clinical trials of new medicines for children. She holds a PhD in Statistics from the University of Bath.
U.S. regulatory considerations and case studies for rare diseases
In this talk, I will present an overview of the U.S. Food and Drug Administration’s policies and practices for encouraging development of products for rare diseases and of evaluating clinical evidence for the safety and effectiveness of such products. I’ll discuss study designs that may be particularly appropriate for rare disease product development, and address some of their statistical implications. Finally, I’ll present case studies of products that were approved for rare diseases using unusual or innovative study designs and/or regulatory pathways.
John Scott is Deputy Director of the Division of Biostatistics in the FDA's Center for Biologics Evaluation and Research, where he has also served as a statistical reviewer for blood products and for cellular, tissue and gene therapies. Prior to joining the FDA in 2008, he worked in psychiatric clinical trials at the University of Pittsburgh Medical Center and did neuroimaging research with the Neurostatistics Laboratory at McClean Hospital, Harvard Medical School. He has authored or co-authored numerous articles in areas including Bayesian and adaptive clinical trial design and analysis, drug and vaccine safety, data and text mining, and benefit-risk assessment. He holds a Ph.D. in Biostatistics from the University of Pittsburgh and an M.A. in Mathematics from Washington University in St. Louis, and is an associate editor of the journal, Pharmaceutical Statistics.
Bayesian methods for the design and interpretation of clinical trials in rare diseases
For studies in rare diseases, the sample size needed to meet a conventional frequentist power requirement can be daunting, even if patients are to be recruited over several years. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose Bayesian approaches for the conduct of rare disease trials comparing an experimental treatment with a control when the primary endpoint is binary or normally distributed. We describe processes which can be used to systematically elicit from clinicians opinions on treatment efficacy in order to establish Bayesian priors for unknown model parameters. The proposed approaches are illustrated by describing applications to two Bayesian randomised controlled trials, namely a study in childhood polyarteritis nodosa and a study in chronic recurrent multifocal osteomyelitis. Once prior distributions have been established, consideration of the extent to which opinion can be changed, even by the best feasible design, can help to determine whether a small trial is worthwhile.
Lisa Hampson is a Lecturer in Statistics at Lancaster University. Her research interests are in clinical trials, including group sequential tests and Bayesian methods for trials in rare diseases and dose-escalation. Her recent research has focused on developing methods for clinical trials of new medicines for children. She holds a PhD in Statistics from the University of Bath.
U.S. regulatory considerations and case studies for rare diseases
In this talk, I will present an overview of the U.S. Food and Drug Administration’s policies and practices for encouraging development of products for rare diseases and of evaluating clinical evidence for the safety and effectiveness of such products. I’ll discuss study designs that may be particularly appropriate for rare disease product development, and address some of their statistical implications. Finally, I’ll present case studies of products that were approved for rare diseases using unusual or innovative study designs and/or regulatory pathways.
John Scott is Deputy Director of the Division of Biostatistics in the FDA's Center for Biologics Evaluation and Research, where he has also served as a statistical reviewer for blood products and for cellular, tissue and gene therapies. Prior to joining the FDA in 2008, he worked in psychiatric clinical trials at the University of Pittsburgh Medical Center and did neuroimaging research with the Neurostatistics Laboratory at McClean Hospital, Harvard Medical School. He has authored or co-authored numerous articles in areas including Bayesian and adaptive clinical trial design and analysis, drug and vaccine safety, data and text mining, and benefit-risk assessment. He holds a Ph.D. in Biostatistics from the University of Pittsburgh and an M.A. in Mathematics from Washington University in St. Louis, and is an associate editor of the journal, Pharmaceutical Statistics.
Bayesian methods for the design and interpretation of clinical trials in rare diseases
For studies in rare diseases, the sample size needed to meet a conventional frequentist power requirement can be daunting, even if patients are to be recruited over several years. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose Bayesian approaches for the conduct of rare disease trials comparing an experimental treatment with a control when the primary endpoint is binary or normally distributed. We describe processes which can be used to systematically elicit from clinicians opinions on treatment efficacy in order to establish Bayesian priors for unknown model parameters. The proposed approaches are illustrated by describing applications to two Bayesian randomised controlled trials, namely a study in childhood polyarteritis nodosa and a study in chronic recurrent multifocal osteomyelitis. Once prior distributions have been established, consideration of the extent to which opinion can be changed, even by the best feasible design, can help to determine whether a small trial is worthwhile.
Lisa Hampson is a Lecturer in Statistics at Lancaster University. Her research interests are in clinical trials, including group sequential tests and Bayesian methods for trials in rare diseases and dose-escalation. Her recent research has focused on developing methods for clinical trials of new medicines for children. She holds a PhD in Statistics from the University of Bath.
U.S. regulatory considerations and case studies for rare diseases
In this talk, I will present an overview of the U.S. Food and Drug Administration’s policies and practices for encouraging development of products for rare diseases and of evaluating clinical evidence for the safety and effectiveness of such products. I’ll discuss study designs that may be particularly appropriate for rare disease product development, and address some of their statistical implications. Finally, I’ll present case studies of products that were approved for rare diseases using unusual or innovative study designs and/or regulatory pathways.
John Scott is Deputy Director of the Division of Biostatistics in the FDA's Center for Biologics Evaluation and Research, where he has also served as a statistical reviewer for blood products and for cellular, tissue and gene therapies. Prior to joining the FDA in 2008, he worked in psychiatric clinical trials at the University of Pittsburgh Medical Center and did neuroimaging research with the Neurostatistics Laboratory at McClean Hospital, Harvard Medical School. He has authored or co-authored numerous articles in areas including Bayesian and adaptive clinical trial design and analysis, drug and vaccine safety, data and text mining, and benefit-risk assessment. He holds a Ph.D. in Biostatistics from the University of Pittsburgh and an M.A. in Mathematics from Washington University in St. Louis, and is an associate editor of the journal, Pharmaceutical Statistics.
Bayesian methods for the design and interpretation of clinical trials in rare diseases
For studies in rare diseases, the sample size needed to meet a conventional frequentist power requirement can be daunting, even if patients are to be recruited over several years. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose Bayesian approaches for the conduct of rare disease trials comparing an experimental treatment with a control when the primary endpoint is binary or normally distributed. We describe processes which can be used to systematically elicit from clinicians opinions on treatment efficacy in order to establish Bayesian priors for unknown model parameters. The proposed approaches are illustrated by describing applications to two Bayesian randomised controlled trials, namely a study in childhood polyarteritis nodosa and a study in chronic recurrent multifocal osteomyelitis. Once prior distributions have been established, consideration of the extent to which opinion can be changed, even by the best feasible design, can help to determine whether a small trial is worthwhile.
Lisa Hampson is a Lecturer in Statistics at Lancaster University. Her research interests are in clinical trials, including group sequential tests and Bayesian methods for trials in rare diseases and dose-escalation. Her recent research has focused on developing methods for clinical trials of new medicines for children. She holds a PhD in Statistics from the University of Bath.
U.S. regulatory considerations and case studies for rare diseases
In this talk, I will present an overview of the U.S. Food and Drug Administration’s policies and practices for encouraging development of products for rare diseases and of evaluating clinical evidence for the safety and effectiveness of such products. I’ll discuss study designs that may be particularly appropriate for rare disease product development, and address some of their statistical implications. Finally, I’ll present case studies of products that were approved for rare diseases using unusual or innovative study designs and/or regulatory pathways.
John Scott is Deputy Director of the Division of Biostatistics in the FDA's Center for Biologics Evaluation and Research, where he has also served as a statistical reviewer for blood products and for cellular, tissue and gene therapies. Prior to joining the FDA in 2008, he worked in psychiatric clinical trials at the University of Pittsburgh Medical Center and did neuroimaging research with the Neurostatistics Laboratory at McClean Hospital, Harvard Medical School. He has authored or co-authored numerous articles in areas including Bayesian and adaptive clinical trial design and analysis, drug and vaccine safety, data and text mining, and benefit-risk assessment. He holds a Ph.D. in Biostatistics from the University of Pittsburgh and an M.A. in Mathematics from Washington University in St. Louis, and is an associate editor of the journal, Pharmaceutical Statistics.
Bayesian methods for the design and interpretation of clinical trials in rare diseases
For studies in rare diseases, the sample size needed to meet a conventional frequentist power requirement can be daunting, even if patients are to be recruited over several years. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose Bayesian approaches for the conduct of rare disease trials comparing an experimental treatment with a control when the primary endpoint is binary or normally distributed. We describe processes which can be used to systematically elicit from clinicians opinions on treatment efficacy in order to establish Bayesian priors for unknown model parameters. The proposed approaches are illustrated by describing applications to two Bayesian randomised controlled trials, namely a study in childhood polyarteritis nodosa and a study in chronic recurrent multifocal osteomyelitis. Once prior distributions have been established, consideration of the extent to which opinion can be changed, even by the best feasible design, can help to determine whether a small trial is worthwhile.
Lisa Hampson is a Lecturer in Statistics at Lancaster University. Her research interests are in clinical trials, including group sequential tests and Bayesian methods for trials in rare diseases and dose-escalation. Her recent research has focused on developing methods for clinical trials of new medicines for children. She holds a PhD in Statistics from the University of Bath.
U.S. regulatory considerations and case studies for rare diseases
In this talk, I will present an overview of the U.S. Food and Drug Administration’s policies and practices for encouraging development of products for rare diseases and of evaluating clinical evidence for the safety and effectiveness of such products. I’ll discuss study designs that may be particularly appropriate for rare disease product development, and address some of their statistical implications. Finally, I’ll present case studies of products that were approved for rare diseases using unusual or innovative study designs and/or regulatory pathways.
John Scott is Deputy Director of the Division of Biostatistics in the FDA's Center for Biologics Evaluation and Research, where he has also served as a statistical reviewer for blood products and for cellular, tissue and gene therapies. Prior to joining the FDA in 2008, he worked in psychiatric clinical trials at the University of Pittsburgh Medical Center and did neuroimaging research with the Neurostatistics Laboratory at McClean Hospital, Harvard Medical School. He has authored or co-authored numerous articles in areas including Bayesian and adaptive clinical trial design and analysis, drug and vaccine safety, data and text mining, and benefit-risk assessment. He holds a Ph.D. in Biostatistics from the University of Pittsburgh and an M.A. in Mathematics from Washington University in St. Louis, and is an associate editor of the journal, Pharmaceutical Statistics.
Bayesian methods for the design and interpretation of clinical trials in rare diseases
For studies in rare diseases, the sample size needed to meet a conventional frequentist power requirement can be daunting, even if patients are to be recruited over several years. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose Bayesian approaches for the conduct of rare disease trials comparing an experimental treatment with a control when the primary endpoint is binary or normally distributed. We describe processes which can be used to systematically elicit from clinicians opinions on treatment efficacy in order to establish Bayesian priors for unknown model parameters. The proposed approaches are illustrated by describing applications to two Bayesian randomised controlled trials, namely a study in childhood polyarteritis nodosa and a study in chronic recurrent multifocal osteomyelitis. Once prior distributions have been established, consideration of the extent to which opinion can be changed, even by the best feasible design, can help to determine whether a small trial is worthwhile.
Lisa Hampson is a Lecturer in Statistics at Lancaster University. Her research interests are in clinical trials, including group sequential tests and Bayesian methods for trials in rare diseases and dose-escalation. Her recent research has focused on developing methods for clinical trials of new medicines for children. She holds a PhD in Statistics from the University of Bath.
Date: Ongoing 6 month cycle beginning late April/early May 2024
Are you a member of PSI looking to further your career or help develop others - why not sign up to the PSI Mentoring scheme? You can expand your network, improve your leadership skills and learn from more senior colleagues in the industry.
PSI Training Course: Mixed Models and Repeated Measures
This course is presented through lectures and practical sessions using SAS code. It is suitable for statisticians working on clinical trials, who already have a good understanding of linear and generalised linear models.
Joint PSI/EFSPI Visualisation SIG 'Wonderful Wednesday' Webinars
Our monthly webinar explores examples of innovative data visualisations relevant to our day to day work. Each month a new dataset is provided from a clinical trial or other relevant example, and participants are invited to submit a graphic that communicates interesting and relevant characteristics of the data.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This is an interactive online training workshop providing an in-depth review of the estimand framework as laid out by ICH E9(R1) addendum with inputs from estimand experts, case studies, quizzes and opportunity for discussions. You will develop an estimand in a therapeutic area of interest to your company. In an online break-out room, you will join a series of team discussions to implement the estimand framework in a case study, aligning estimands, design, conduct, analysis, (assumptions + sensitivity analyses) to the clinical objective and therapeutic setting.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.