Date: Tuesday 27th June 2023 Time: 14:00-15:00 BST | 15:00-16:00 CET Speakers: Weiliang Qiu and Cheng Wenren
Who is this event intended for? Statisticians in the Pharmaceutical Industry. What is the benefit of attending? EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. In this talk, attendees will hear from Weiliang and Cheng who will be presenting their investigations on EC50 estimation based on multi-donor dose-response data via different approaches.
Registration
Registration for this webinar is free to both Members of PSI and Non-Members.
Please click here to register.
Overview
Weiliang Qiu1, Cheng Wenren1, Tamara Slavnic2, Els Pattyn1, Luc Essermeant1
1Non-Clinical Efficacy & Safety, Early Development & Research, Biostatistics & Programming, Sanofi
2 IT&M Stats.
Dose–response relationships are important in assessing the efficacy and potency of drugs, which can usually be characterized by a 4-parameter logistic (4-PL) model: EC50, slope, lower asymptote, and upper asymptote. EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. For multi-donor dose-response data, it is often the interest to estimate the overall EC50 and its 95% confidence interval (CI). A few multi-donor EC50 estimation methods have been proposed in literature. Jiang and Kopp-Schneider (2014) systematically compared meta-analysis and nonlinear mixed-effects approaches and concluded that meta-analysis approach is simple and robust to summarize EC50 estimates from multiple experiments, especially suited in the case of small number of experiments, while nonlinear mixed-effects approach has issue of convergence failure probably due to overparameterization. In this talk, we investigated ways to improve nonlinear mixed-effects approach to alleviates its issue of convergence failure.
Weiliang Qiu, Els Pattyn, Cheng Wenren and Luc Essermeant are Sanofi employees and may hold shares and/or stock options in the company. Tamara Slavnic has nothing to disclose.
Speaker details
Speaker
Biography
Weiliang Qiu
Weiliang Qiu is a Non-Clinical Efficacy and Safety statistician expert leader at Sanofi and is passionate about using statistics knowledge to help improve the lives of patients. He obtained PhD degree in Statistics from the University of British Columbia in 2004 and have worked at Brigham and Women's Hospital/Harvard Medical School for 14 years since 2004.
Weiliang joined Sanofi Non-Clinical Efficacy and Safety (NCES) team in 2018 and provided statistical supports for non-clinical studies in a variety of therapeutic areas, such as translational sciences, rare and neurological diseases, immunology and inflammation, immuno-oncology, and Genome Medicine Unit. He also works with the NCES team to develop and implement innovative statistical methods to analyze the data from these studies.
Cheng Wenren
Cheng Wenren is a Principal Statistician in the Non-Clinical Efficacy & Safety (NCES) team at Sanofi. Prior to joining Sanofi in 2021, Cheng worked as a CMC Statistician at Bristol-Myers Squibb. Cheng earned his PhD in Statistics from Bowling Green State University in 2014, where his thesis focused on "Mixed model selection based on the conceptual predictive statistic".
Scientific Meetings
PSI Pre-Clinical SIG Webinar: An investigation to improve nonlinear mixed-effects approach for EC50 estimation based on multi-donor dose-response data
Date: Tuesday 27th June 2023 Time: 14:00-15:00 BST | 15:00-16:00 CET Speakers: Weiliang Qiu and Cheng Wenren
Who is this event intended for? Statisticians in the Pharmaceutical Industry. What is the benefit of attending? EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. In this talk, attendees will hear from Weiliang and Cheng who will be presenting their investigations on EC50 estimation based on multi-donor dose-response data via different approaches.
Registration
Registration for this webinar is free to both Members of PSI and Non-Members.
Please click here to register.
Overview
Weiliang Qiu1, Cheng Wenren1, Tamara Slavnic2, Els Pattyn1, Luc Essermeant1
1Non-Clinical Efficacy & Safety, Early Development & Research, Biostatistics & Programming, Sanofi
2 IT&M Stats.
Dose–response relationships are important in assessing the efficacy and potency of drugs, which can usually be characterized by a 4-parameter logistic (4-PL) model: EC50, slope, lower asymptote, and upper asymptote. EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. For multi-donor dose-response data, it is often the interest to estimate the overall EC50 and its 95% confidence interval (CI). A few multi-donor EC50 estimation methods have been proposed in literature. Jiang and Kopp-Schneider (2014) systematically compared meta-analysis and nonlinear mixed-effects approaches and concluded that meta-analysis approach is simple and robust to summarize EC50 estimates from multiple experiments, especially suited in the case of small number of experiments, while nonlinear mixed-effects approach has issue of convergence failure probably due to overparameterization. In this talk, we investigated ways to improve nonlinear mixed-effects approach to alleviates its issue of convergence failure.
Weiliang Qiu, Els Pattyn, Cheng Wenren and Luc Essermeant are Sanofi employees and may hold shares and/or stock options in the company. Tamara Slavnic has nothing to disclose.
Speaker details
Speaker
Biography
Weiliang Qiu
Weiliang Qiu is a Non-Clinical Efficacy and Safety statistician expert leader at Sanofi and is passionate about using statistics knowledge to help improve the lives of patients. He obtained PhD degree in Statistics from the University of British Columbia in 2004 and have worked at Brigham and Women's Hospital/Harvard Medical School for 14 years since 2004.
Weiliang joined Sanofi Non-Clinical Efficacy and Safety (NCES) team in 2018 and provided statistical supports for non-clinical studies in a variety of therapeutic areas, such as translational sciences, rare and neurological diseases, immunology and inflammation, immuno-oncology, and Genome Medicine Unit. He also works with the NCES team to develop and implement innovative statistical methods to analyze the data from these studies.
Cheng Wenren
Cheng Wenren is a Principal Statistician in the Non-Clinical Efficacy & Safety (NCES) team at Sanofi. Prior to joining Sanofi in 2021, Cheng worked as a CMC Statistician at Bristol-Myers Squibb. Cheng earned his PhD in Statistics from Bowling Green State University in 2014, where his thesis focused on "Mixed model selection based on the conceptual predictive statistic".
Training Courses
PSI Pre-Clinical SIG Webinar: An investigation to improve nonlinear mixed-effects approach for EC50 estimation based on multi-donor dose-response data
Date: Tuesday 27th June 2023 Time: 14:00-15:00 BST | 15:00-16:00 CET Speakers: Weiliang Qiu and Cheng Wenren
Who is this event intended for? Statisticians in the Pharmaceutical Industry. What is the benefit of attending? EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. In this talk, attendees will hear from Weiliang and Cheng who will be presenting their investigations on EC50 estimation based on multi-donor dose-response data via different approaches.
Registration
Registration for this webinar is free to both Members of PSI and Non-Members.
Please click here to register.
Overview
Weiliang Qiu1, Cheng Wenren1, Tamara Slavnic2, Els Pattyn1, Luc Essermeant1
1Non-Clinical Efficacy & Safety, Early Development & Research, Biostatistics & Programming, Sanofi
2 IT&M Stats.
Dose–response relationships are important in assessing the efficacy and potency of drugs, which can usually be characterized by a 4-parameter logistic (4-PL) model: EC50, slope, lower asymptote, and upper asymptote. EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. For multi-donor dose-response data, it is often the interest to estimate the overall EC50 and its 95% confidence interval (CI). A few multi-donor EC50 estimation methods have been proposed in literature. Jiang and Kopp-Schneider (2014) systematically compared meta-analysis and nonlinear mixed-effects approaches and concluded that meta-analysis approach is simple and robust to summarize EC50 estimates from multiple experiments, especially suited in the case of small number of experiments, while nonlinear mixed-effects approach has issue of convergence failure probably due to overparameterization. In this talk, we investigated ways to improve nonlinear mixed-effects approach to alleviates its issue of convergence failure.
Weiliang Qiu, Els Pattyn, Cheng Wenren and Luc Essermeant are Sanofi employees and may hold shares and/or stock options in the company. Tamara Slavnic has nothing to disclose.
Speaker details
Speaker
Biography
Weiliang Qiu
Weiliang Qiu is a Non-Clinical Efficacy and Safety statistician expert leader at Sanofi and is passionate about using statistics knowledge to help improve the lives of patients. He obtained PhD degree in Statistics from the University of British Columbia in 2004 and have worked at Brigham and Women's Hospital/Harvard Medical School for 14 years since 2004.
Weiliang joined Sanofi Non-Clinical Efficacy and Safety (NCES) team in 2018 and provided statistical supports for non-clinical studies in a variety of therapeutic areas, such as translational sciences, rare and neurological diseases, immunology and inflammation, immuno-oncology, and Genome Medicine Unit. He also works with the NCES team to develop and implement innovative statistical methods to analyze the data from these studies.
Cheng Wenren
Cheng Wenren is a Principal Statistician in the Non-Clinical Efficacy & Safety (NCES) team at Sanofi. Prior to joining Sanofi in 2021, Cheng worked as a CMC Statistician at Bristol-Myers Squibb. Cheng earned his PhD in Statistics from Bowling Green State University in 2014, where his thesis focused on "Mixed model selection based on the conceptual predictive statistic".
Journal Club
PSI Pre-Clinical SIG Webinar: An investigation to improve nonlinear mixed-effects approach for EC50 estimation based on multi-donor dose-response data
Date: Tuesday 27th June 2023 Time: 14:00-15:00 BST | 15:00-16:00 CET Speakers: Weiliang Qiu and Cheng Wenren
Who is this event intended for? Statisticians in the Pharmaceutical Industry. What is the benefit of attending? EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. In this talk, attendees will hear from Weiliang and Cheng who will be presenting their investigations on EC50 estimation based on multi-donor dose-response data via different approaches.
Registration
Registration for this webinar is free to both Members of PSI and Non-Members.
Please click here to register.
Overview
Weiliang Qiu1, Cheng Wenren1, Tamara Slavnic2, Els Pattyn1, Luc Essermeant1
1Non-Clinical Efficacy & Safety, Early Development & Research, Biostatistics & Programming, Sanofi
2 IT&M Stats.
Dose–response relationships are important in assessing the efficacy and potency of drugs, which can usually be characterized by a 4-parameter logistic (4-PL) model: EC50, slope, lower asymptote, and upper asymptote. EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. For multi-donor dose-response data, it is often the interest to estimate the overall EC50 and its 95% confidence interval (CI). A few multi-donor EC50 estimation methods have been proposed in literature. Jiang and Kopp-Schneider (2014) systematically compared meta-analysis and nonlinear mixed-effects approaches and concluded that meta-analysis approach is simple and robust to summarize EC50 estimates from multiple experiments, especially suited in the case of small number of experiments, while nonlinear mixed-effects approach has issue of convergence failure probably due to overparameterization. In this talk, we investigated ways to improve nonlinear mixed-effects approach to alleviates its issue of convergence failure.
Weiliang Qiu, Els Pattyn, Cheng Wenren and Luc Essermeant are Sanofi employees and may hold shares and/or stock options in the company. Tamara Slavnic has nothing to disclose.
Speaker details
Speaker
Biography
Weiliang Qiu
Weiliang Qiu is a Non-Clinical Efficacy and Safety statistician expert leader at Sanofi and is passionate about using statistics knowledge to help improve the lives of patients. He obtained PhD degree in Statistics from the University of British Columbia in 2004 and have worked at Brigham and Women's Hospital/Harvard Medical School for 14 years since 2004.
Weiliang joined Sanofi Non-Clinical Efficacy and Safety (NCES) team in 2018 and provided statistical supports for non-clinical studies in a variety of therapeutic areas, such as translational sciences, rare and neurological diseases, immunology and inflammation, immuno-oncology, and Genome Medicine Unit. He also works with the NCES team to develop and implement innovative statistical methods to analyze the data from these studies.
Cheng Wenren
Cheng Wenren is a Principal Statistician in the Non-Clinical Efficacy & Safety (NCES) team at Sanofi. Prior to joining Sanofi in 2021, Cheng worked as a CMC Statistician at Bristol-Myers Squibb. Cheng earned his PhD in Statistics from Bowling Green State University in 2014, where his thesis focused on "Mixed model selection based on the conceptual predictive statistic".
Webinars
PSI Pre-Clinical SIG Webinar: An investigation to improve nonlinear mixed-effects approach for EC50 estimation based on multi-donor dose-response data
Date: Tuesday 27th June 2023 Time: 14:00-15:00 BST | 15:00-16:00 CET Speakers: Weiliang Qiu and Cheng Wenren
Who is this event intended for? Statisticians in the Pharmaceutical Industry. What is the benefit of attending? EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. In this talk, attendees will hear from Weiliang and Cheng who will be presenting their investigations on EC50 estimation based on multi-donor dose-response data via different approaches.
Registration
Registration for this webinar is free to both Members of PSI and Non-Members.
Please click here to register.
Overview
Weiliang Qiu1, Cheng Wenren1, Tamara Slavnic2, Els Pattyn1, Luc Essermeant1
1Non-Clinical Efficacy & Safety, Early Development & Research, Biostatistics & Programming, Sanofi
2 IT&M Stats.
Dose–response relationships are important in assessing the efficacy and potency of drugs, which can usually be characterized by a 4-parameter logistic (4-PL) model: EC50, slope, lower asymptote, and upper asymptote. EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. For multi-donor dose-response data, it is often the interest to estimate the overall EC50 and its 95% confidence interval (CI). A few multi-donor EC50 estimation methods have been proposed in literature. Jiang and Kopp-Schneider (2014) systematically compared meta-analysis and nonlinear mixed-effects approaches and concluded that meta-analysis approach is simple and robust to summarize EC50 estimates from multiple experiments, especially suited in the case of small number of experiments, while nonlinear mixed-effects approach has issue of convergence failure probably due to overparameterization. In this talk, we investigated ways to improve nonlinear mixed-effects approach to alleviates its issue of convergence failure.
Weiliang Qiu, Els Pattyn, Cheng Wenren and Luc Essermeant are Sanofi employees and may hold shares and/or stock options in the company. Tamara Slavnic has nothing to disclose.
Speaker details
Speaker
Biography
Weiliang Qiu
Weiliang Qiu is a Non-Clinical Efficacy and Safety statistician expert leader at Sanofi and is passionate about using statistics knowledge to help improve the lives of patients. He obtained PhD degree in Statistics from the University of British Columbia in 2004 and have worked at Brigham and Women's Hospital/Harvard Medical School for 14 years since 2004.
Weiliang joined Sanofi Non-Clinical Efficacy and Safety (NCES) team in 2018 and provided statistical supports for non-clinical studies in a variety of therapeutic areas, such as translational sciences, rare and neurological diseases, immunology and inflammation, immuno-oncology, and Genome Medicine Unit. He also works with the NCES team to develop and implement innovative statistical methods to analyze the data from these studies.
Cheng Wenren
Cheng Wenren is a Principal Statistician in the Non-Clinical Efficacy & Safety (NCES) team at Sanofi. Prior to joining Sanofi in 2021, Cheng worked as a CMC Statistician at Bristol-Myers Squibb. Cheng earned his PhD in Statistics from Bowling Green State University in 2014, where his thesis focused on "Mixed model selection based on the conceptual predictive statistic".
Careers Meetings
PSI Pre-Clinical SIG Webinar: An investigation to improve nonlinear mixed-effects approach for EC50 estimation based on multi-donor dose-response data
Date: Tuesday 27th June 2023 Time: 14:00-15:00 BST | 15:00-16:00 CET Speakers: Weiliang Qiu and Cheng Wenren
Who is this event intended for? Statisticians in the Pharmaceutical Industry. What is the benefit of attending? EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. In this talk, attendees will hear from Weiliang and Cheng who will be presenting their investigations on EC50 estimation based on multi-donor dose-response data via different approaches.
Registration
Registration for this webinar is free to both Members of PSI and Non-Members.
Please click here to register.
Overview
Weiliang Qiu1, Cheng Wenren1, Tamara Slavnic2, Els Pattyn1, Luc Essermeant1
1Non-Clinical Efficacy & Safety, Early Development & Research, Biostatistics & Programming, Sanofi
2 IT&M Stats.
Dose–response relationships are important in assessing the efficacy and potency of drugs, which can usually be characterized by a 4-parameter logistic (4-PL) model: EC50, slope, lower asymptote, and upper asymptote. EC50, the concentration of a drug that induces a response halfway between the baseline and maximum, is a key quantity to evaluate drug potency. For multi-donor dose-response data, it is often the interest to estimate the overall EC50 and its 95% confidence interval (CI). A few multi-donor EC50 estimation methods have been proposed in literature. Jiang and Kopp-Schneider (2014) systematically compared meta-analysis and nonlinear mixed-effects approaches and concluded that meta-analysis approach is simple and robust to summarize EC50 estimates from multiple experiments, especially suited in the case of small number of experiments, while nonlinear mixed-effects approach has issue of convergence failure probably due to overparameterization. In this talk, we investigated ways to improve nonlinear mixed-effects approach to alleviates its issue of convergence failure.
Weiliang Qiu, Els Pattyn, Cheng Wenren and Luc Essermeant are Sanofi employees and may hold shares and/or stock options in the company. Tamara Slavnic has nothing to disclose.
Speaker details
Speaker
Biography
Weiliang Qiu
Weiliang Qiu is a Non-Clinical Efficacy and Safety statistician expert leader at Sanofi and is passionate about using statistics knowledge to help improve the lives of patients. He obtained PhD degree in Statistics from the University of British Columbia in 2004 and have worked at Brigham and Women's Hospital/Harvard Medical School for 14 years since 2004.
Weiliang joined Sanofi Non-Clinical Efficacy and Safety (NCES) team in 2018 and provided statistical supports for non-clinical studies in a variety of therapeutic areas, such as translational sciences, rare and neurological diseases, immunology and inflammation, immuno-oncology, and Genome Medicine Unit. He also works with the NCES team to develop and implement innovative statistical methods to analyze the data from these studies.
Cheng Wenren
Cheng Wenren is a Principal Statistician in the Non-Clinical Efficacy & Safety (NCES) team at Sanofi. Prior to joining Sanofi in 2021, Cheng worked as a CMC Statistician at Bristol-Myers Squibb. Cheng earned his PhD in Statistics from Bowling Green State University in 2014, where his thesis focused on "Mixed model selection based on the conceptual predictive statistic".
Upcoming Events
PSI Introduction to Industry Training (ITIT) Course - 2025/2026
An introductory course giving an overview of the pharmaceutical industry and the drug development process as a whole, aimed at those with 1-3 years' experience. It comprises of six 2-day sessions covering a range of topics including Research and Development, Toxicology, Data Management and the Role of a CRO, Clinical Trials, Reimbursement, and Marketing.
Joint PSI/EFSPI Visualisation SIG 'Wonderful Wednesday' Webinars
Our monthly webinar explores examples of innovative data visualisations relevant to our day to day work. Each month a new dataset is provided from a clinical trial or other relevant example, and participants are invited to submit a graphic that communicates interesting and relevant characteristics of the data.
PSI Webinar: Methods and tools integrating clinical trial evidence with historical or real-world data, Bayesian borrowing, and causal inference
This webinar is organised by the RWD SIG and the Historical Data SIG. We will review recent methods, applications, and tools of integrating subject-level-data from clinical trial with external data using Bayesian methods and/or causal inference methods.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
PSI Webinar: Applying the Estimand Framework to Clinical Pharmacology Trials with a Case Study in Bioequivalance
This will be a 45 minute webinar which will explain the topic presented in the published paper, ‘Applying the Estimand Framework to Clinical Pharmacology Trials with a Case Study in Bioequivalance’. There will be 15 minutes for a panel Q&A with some of the authors following the presentation.
PSI Webinar: Methodology and first results of the iRISE (improving Reproducibility In SciencE) consortium
This 1-hour webinar will be an opportunity to hear about the methodology and first results of the iRISE consortium. iRISE is working towards a better understanding of reproducibility and the interventions that work to improve it. At the end of the presentation there will also be the opportunity to ask questions.
One-day Event: Change Management for Moving to R/Open-Source
This one-day event focuses on the comprehensive management of transitioning to R/Open-Source, addressing the challenges and providing actionable insights. Attendees will participate in sessions covering essential topics such as training best practices, creating strategic plans, making the case to senior management, and managing both statistical and programming aspects of the transition.
PSI Book Club - The Art of Explanation: How to Communicate with Clarity and Confidence
Develop your non-technical skills by reading The Art of Explanation by Ros Atkins and joining the Sept-Dec 2025 book club. You will be invited to join facilitated discussions of the concepts and ideas and apply skills from the book in-between sessions.
This course is aimed at biostatisticians with no or some pediatric drug development experience who are interested to further their understanding. We will give you an introduction to the pediatric drug development landscape. This will include identifying the key regulations and processes governing pediatric development, a discussion on the needs and challenges when conducting pediatric research and a focus on the ways to overcome these challenges from a statistical perspective.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This is an exciting, new opportunity for an experienced Statistician looking to take the next step in their career. Offered as a remote or hybrid position aligned with our site in Harrogate, North Yorkshire.