Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Scientific Meetings
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Training Courses
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Journal Club
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Webinars
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Careers Meetings
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Upcoming Events
Joint PSI/EFSPI Visualisation SIG 'Wonderful Wednesday' Webinars
Our monthly webinar explores examples of innovative data visualisations relevant to our day to day work. Each month a new dataset is provided from a clinical trial or other relevant example, and participants are invited to submit a graphic that communicates interesting and relevant characteristics of the data.
Topic: R Package Basics.
Our monthly webinar series allows attendees to gain practical knowledge and skills in open-source coding and tools, with a focus on applications in the pharmaceutical industry. This month’s session, “R Package Basics,” will introduce the fundamentals of working with R packages—covering how to install, load, and manage them effectively to support data analysis and reproducible research. The session will provide a solid starting point, clarify common misconceptions, and offer valuable resources for continued learning.
Date: Ongoing 6 month cycle beginning late April/early May 2026
Are you a member of PSI looking to further your career or help develop others - why not sign up to the PSI Mentoring scheme? You can expand your network, improve your leadership skills and learn from more senior colleagues in the industry.
PSI Book Club Lunch and Learn: Communicating with Clarity and Confidence
If you have read Ros Atkins’ book The Art of Explanation or want to listen to the BBC’s ‘Communicator in Chief’, you are invited to join the PSI Book Club Lunch and Learn, to discuss the content and application with the author, Ros Atkins. Having written the book within the context of the news industry, Ros is keen to hear how we have applied the ideas as statisticians within drug development and clinical trials. There will be dedicated time during the webinar to ASK THE AUTHOR any questions – don’t miss out on this exclusive PSI Book Club event!
Haven’t read the book yet? Pick up a copy today and join us.
Explanation - identifying and communicating what we want to say - is described as an art, in the title of his book. However, the creativity comes from Ros’ discernment in identifying and describing a clear step-by-step process to follow and practice. Readers can learn Ros’ rules, developed and polished throughout his career as a journalist, to help communicate complex written or spoken information clearly.
PSI Training Course: Effective Leadership – the keys to growing your leadership capabilities
This course will consist of three online half-day workshops. The first will be aimed at building trust, the backbone of leadership and a key to becoming effective. This is key to building a solid foundation.
The second will be on improving communication as a technical leader. This workshop will focus on communication strategies for different stakeholders and will involve tips on effective communication and how to develop the skills of active listening, coaching and what improv can teach us about good communication.
The final workshop will bring these two components together to help leaders become more influential. This will also focus on how to use Steven Covey’s 7-Habits, in particular Habits 4, 5 and 6, which are called the habits of communication.
The workshops will be interactive, allowing you to practice the concepts discussed. There will be plenty of time for questions and discussion. There will also be reflective time where you can think about what you are learning and how you might experiment with it.