Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Scientific Meetings
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Training Courses
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Journal Club
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Webinars
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Careers Meetings
PSI Pre-Clinical SIG Webinar: Assay Qualification by Linear Mixed Model: Confidence, Prediction & Tolerance Intervals
Date: Tuesday 21st June 2022 Time: 14:00-15:00 BST | 15:00-16:00 CEST Speaker: Bernard Francq
Who is this event intended for? Statisticians and others working on assay qualification within the Pharmaceutical Industry. What is the benefit of attending? Attendees will learn about robust assay qualification methodology.
Registration
You can now register for this event. Registration fees are as follows:
- Members of PSI = Free of charge
- Non-Members of PSI = Free of charge
To register for the session, please click here.
Overview
In the pharmaceutical industry, all analytical methods must be shown to deliver unbiased and precise results. In an assay qualification or validation study, the trueness, accuracy and intermediate precision are usually assessed by comparing the measured concentrations to their nominal levels. Trueness is assessed by using confidence intervals of mean measured concentration, accuracy by prediction intervals for a future measured concentration, and the intermediate precision by the total variance.
ICH and USP guidelines alike request that all relevant sources of variability must be studied, e.g. the effect of different technicians, the day-to-day variability or the use of multiple reagent lots. Those different random effects must be modeled as crossed, nested or a combination of both.
Confidence, prediction and tolerance intervals in linear mixed models will be detailed with a focus on the interpretation of statistical results. Their relationships will be discussed together with the POOS (out-of-specification probability). Two real datasets from assay validation study during vaccine development are used to illustrate the statistical intervals and the POOS.
Speaker details
Speaker
Biography
Bernard Francq
Bernard G Francq is Lead Statistician with GSK Biologicals, driving statistical innovation for CMC projects worldwide. He holds a PhD in Statistics (UCLouvain, 2013).
His work on errors-in-variables (EIV) regressions in method comparison studies has been awarded Best MSc Thesis Biostatistics (Quételet 2008, Belgium), Best Chemometrician Prize (Chimiométrie 2009, Paris) and Best Young Researcher (Agrostat 2012, Paris). His communication skills have been recognized with the Greenfield Challenge Award (ENBIS 2012, Ljubljana). Recent work on tolerance intervals in bridging studies was awarded Best GSK Statistical Paper (2020). He lectures at UCLouvain and regularly offers trainings to statisticians in the (bio)pharmaceutical industry.
Upcoming Events
PSI Mentoring 2025
Date: Ongoing 6 month cycle beginning late April/early May 2024
Are you a member of PSI looking to further your career or help develop others - why not sign up to the PSI Mentoring scheme? You can expand your network, improve your leadership skills and learn from more senior colleagues in the industry.
PSI Training Course: Mixed Models and Repeated Measures
This course is presented through lectures and practical sessions using SAS code. It is suitable for statisticians working on clinical trials, who already have a good understanding of linear and generalised linear models.
Joint PSI/EFSPI Visualisation SIG 'Wonderful Wednesday' Webinars
Our monthly webinar explores examples of innovative data visualisations relevant to our day to day work. Each month a new dataset is provided from a clinical trial or other relevant example, and participants are invited to submit a graphic that communicates interesting and relevant characteristics of the data.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This is an interactive online training workshop providing an in-depth review of the estimand framework as laid out by ICH E9(R1) addendum with inputs from estimand experts, case studies, quizzes and opportunity for discussions. You will develop an estimand in a therapeutic area of interest to your company. In an online break-out room, you will join a series of team discussions to implement the estimand framework in a case study, aligning estimands, design, conduct, analysis, (assumptions + sensitivity analyses) to the clinical objective and therapeutic setting.
Maths Meets Medicine: Exploring Careers in the Pharmaceutical Industry
This session will showcase how careers in pharmaceutical statistics can be both rewarding and impactful, with a focus on how mathematics is integral to the development of medicines. Students will hear from industry experts, explore diverse career paths, and learn why continuing to study math is key to unlocking exciting opportunities in the healthcare sector.
Dissolution Testing: Time for Statistical (r)Evolution
Webinar dedicated to the topic of dissolution of oral solid dosage forms; opportunity to hear from statisticians working in the CMC field, with open question and answers.
In addition, the CMC Statistical Network Europe special interest group will discuss advocacy opportunities, have your say to contribute to the future direction.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.