N of 1 trials are trials in which individual patients are repeatedly treated with experimental and control treatments in a deliberate and designed manner using principles of control, randomisation and replication. Their uses include personalising treatment and increasing efficiency by reducing the number of patients it is necessary to study.
In chronic diseases, sets of n-of-1 trials (in which a limited number of patients follow an n-of-1 protocol) have great potential as phase IV trials for understanding components of variation but may also constitute possible Phase III programmes for rare diseases. They can also be used as phase II studies for proof of concept and dose-finding. However, they are often poorly analysed and, indeed, much of the published advice is poor.
This course will present the latest thinking on n-of-1 trials and cover not only their analysis through SAS®, R® GenStat® and meta-analysis packages but also approaches to design. They will also be critically examined as to their potential use in a) establishing average effects of treatment b) studying the extent to which such effects vary from patient to patient and c) optimising treatment for individual patients.
Course leader
This course will be given by Professor Stephen Senn, of the Luxembourg Institute of Health, who is well- known for his work on the design and analysis of clinical trials and the application of statistics in drug development.
Topics covered
Uses of n-of-1 trials and purposes of analysis
Showing the treatment can work
Understanding variation in effect
Predicting effects
Design
Randomisation in cycles
Randomisation in patient blocks
Graphical presentation of results
Trellis plots
Dot plots
Causal analysis
Analysis of variance
Block structure and the Wilkinson & Roger notation
Main effect models
Allowing for interaction
Summary measures approaches
Mixed models
Estimation
Best linear unbiased predictors (shrunk estimates)
N of 1 trials are trials in which individual patients are repeatedly treated with experimental and control treatments in a deliberate and designed manner using principles of control, randomisation and replication. Their uses include personalising treatment and increasing efficiency by reducing the number of patients it is necessary to study.
In chronic diseases, sets of n-of-1 trials (in which a limited number of patients follow an n-of-1 protocol) have great potential as phase IV trials for understanding components of variation but may also constitute possible Phase III programmes for rare diseases. They can also be used as phase II studies for proof of concept and dose-finding. However, they are often poorly analysed and, indeed, much of the published advice is poor.
This course will present the latest thinking on n-of-1 trials and cover not only their analysis through SAS®, R® GenStat® and meta-analysis packages but also approaches to design. They will also be critically examined as to their potential use in a) establishing average effects of treatment b) studying the extent to which such effects vary from patient to patient and c) optimising treatment for individual patients.
Course leader
This course will be given by Professor Stephen Senn, of the Luxembourg Institute of Health, who is well- known for his work on the design and analysis of clinical trials and the application of statistics in drug development.
Topics covered
Uses of n-of-1 trials and purposes of analysis
Showing the treatment can work
Understanding variation in effect
Predicting effects
Design
Randomisation in cycles
Randomisation in patient blocks
Graphical presentation of results
Trellis plots
Dot plots
Causal analysis
Analysis of variance
Block structure and the Wilkinson & Roger notation
Main effect models
Allowing for interaction
Summary measures approaches
Mixed models
Estimation
Best linear unbiased predictors (shrunk estimates)
N of 1 trials are trials in which individual patients are repeatedly treated with experimental and control treatments in a deliberate and designed manner using principles of control, randomisation and replication. Their uses include personalising treatment and increasing efficiency by reducing the number of patients it is necessary to study.
In chronic diseases, sets of n-of-1 trials (in which a limited number of patients follow an n-of-1 protocol) have great potential as phase IV trials for understanding components of variation but may also constitute possible Phase III programmes for rare diseases. They can also be used as phase II studies for proof of concept and dose-finding. However, they are often poorly analysed and, indeed, much of the published advice is poor.
This course will present the latest thinking on n-of-1 trials and cover not only their analysis through SAS®, R® GenStat® and meta-analysis packages but also approaches to design. They will also be critically examined as to their potential use in a) establishing average effects of treatment b) studying the extent to which such effects vary from patient to patient and c) optimising treatment for individual patients.
Course leader
This course will be given by Professor Stephen Senn, of the Luxembourg Institute of Health, who is well- known for his work on the design and analysis of clinical trials and the application of statistics in drug development.
Topics covered
Uses of n-of-1 trials and purposes of analysis
Showing the treatment can work
Understanding variation in effect
Predicting effects
Design
Randomisation in cycles
Randomisation in patient blocks
Graphical presentation of results
Trellis plots
Dot plots
Causal analysis
Analysis of variance
Block structure and the Wilkinson & Roger notation
Main effect models
Allowing for interaction
Summary measures approaches
Mixed models
Estimation
Best linear unbiased predictors (shrunk estimates)
N of 1 trials are trials in which individual patients are repeatedly treated with experimental and control treatments in a deliberate and designed manner using principles of control, randomisation and replication. Their uses include personalising treatment and increasing efficiency by reducing the number of patients it is necessary to study.
In chronic diseases, sets of n-of-1 trials (in which a limited number of patients follow an n-of-1 protocol) have great potential as phase IV trials for understanding components of variation but may also constitute possible Phase III programmes for rare diseases. They can also be used as phase II studies for proof of concept and dose-finding. However, they are often poorly analysed and, indeed, much of the published advice is poor.
This course will present the latest thinking on n-of-1 trials and cover not only their analysis through SAS®, R® GenStat® and meta-analysis packages but also approaches to design. They will also be critically examined as to their potential use in a) establishing average effects of treatment b) studying the extent to which such effects vary from patient to patient and c) optimising treatment for individual patients.
Course leader
This course will be given by Professor Stephen Senn, of the Luxembourg Institute of Health, who is well- known for his work on the design and analysis of clinical trials and the application of statistics in drug development.
Topics covered
Uses of n-of-1 trials and purposes of analysis
Showing the treatment can work
Understanding variation in effect
Predicting effects
Design
Randomisation in cycles
Randomisation in patient blocks
Graphical presentation of results
Trellis plots
Dot plots
Causal analysis
Analysis of variance
Block structure and the Wilkinson & Roger notation
Main effect models
Allowing for interaction
Summary measures approaches
Mixed models
Estimation
Best linear unbiased predictors (shrunk estimates)
N of 1 trials are trials in which individual patients are repeatedly treated with experimental and control treatments in a deliberate and designed manner using principles of control, randomisation and replication. Their uses include personalising treatment and increasing efficiency by reducing the number of patients it is necessary to study.
In chronic diseases, sets of n-of-1 trials (in which a limited number of patients follow an n-of-1 protocol) have great potential as phase IV trials for understanding components of variation but may also constitute possible Phase III programmes for rare diseases. They can also be used as phase II studies for proof of concept and dose-finding. However, they are often poorly analysed and, indeed, much of the published advice is poor.
This course will present the latest thinking on n-of-1 trials and cover not only their analysis through SAS®, R® GenStat® and meta-analysis packages but also approaches to design. They will also be critically examined as to their potential use in a) establishing average effects of treatment b) studying the extent to which such effects vary from patient to patient and c) optimising treatment for individual patients.
Course leader
This course will be given by Professor Stephen Senn, of the Luxembourg Institute of Health, who is well- known for his work on the design and analysis of clinical trials and the application of statistics in drug development.
Topics covered
Uses of n-of-1 trials and purposes of analysis
Showing the treatment can work
Understanding variation in effect
Predicting effects
Design
Randomisation in cycles
Randomisation in patient blocks
Graphical presentation of results
Trellis plots
Dot plots
Causal analysis
Analysis of variance
Block structure and the Wilkinson & Roger notation
Main effect models
Allowing for interaction
Summary measures approaches
Mixed models
Estimation
Best linear unbiased predictors (shrunk estimates)
N of 1 trials are trials in which individual patients are repeatedly treated with experimental and control treatments in a deliberate and designed manner using principles of control, randomisation and replication. Their uses include personalising treatment and increasing efficiency by reducing the number of patients it is necessary to study.
In chronic diseases, sets of n-of-1 trials (in which a limited number of patients follow an n-of-1 protocol) have great potential as phase IV trials for understanding components of variation but may also constitute possible Phase III programmes for rare diseases. They can also be used as phase II studies for proof of concept and dose-finding. However, they are often poorly analysed and, indeed, much of the published advice is poor.
This course will present the latest thinking on n-of-1 trials and cover not only their analysis through SAS®, R® GenStat® and meta-analysis packages but also approaches to design. They will also be critically examined as to their potential use in a) establishing average effects of treatment b) studying the extent to which such effects vary from patient to patient and c) optimising treatment for individual patients.
Course leader
This course will be given by Professor Stephen Senn, of the Luxembourg Institute of Health, who is well- known for his work on the design and analysis of clinical trials and the application of statistics in drug development.
Topics covered
Uses of n-of-1 trials and purposes of analysis
Showing the treatment can work
Understanding variation in effect
Predicting effects
Design
Randomisation in cycles
Randomisation in patient blocks
Graphical presentation of results
Trellis plots
Dot plots
Causal analysis
Analysis of variance
Block structure and the Wilkinson & Roger notation
Main effect models
Allowing for interaction
Summary measures approaches
Mixed models
Estimation
Best linear unbiased predictors (shrunk estimates)
PSI Book Club - The Art of Explanation: How to Communicate with Clarity and Confidence
Develop your non-technical skills by reading The Art of Explanation by Ros Atkins and joining the Sept-Dec 2025 book club. You will be invited to join facilitated discussions of the concepts and ideas and apply skills from the book in-between sessions.
Joint PSI/EFSPI Visualisation SIG 'Wonderful Wednesday' Webinars
Our monthly webinar explores examples of innovative data visualisations relevant to our day to day work. Each month a new dataset is provided from a clinical trial or other relevant example, and participants are invited to submit a graphic that communicates interesting and relevant characteristics of the data.
Topic: R Package Basics.
Our monthly webinar series allows attendees to gain practical knowledge and skills in open-source coding and tools, with a focus on applications in the pharmaceutical industry. This month’s session, “R Package Basics,” will introduce the fundamentals of working with R packages—covering how to install, load, and manage them effectively to support data analysis and reproducible research. The session will provide a solid starting point, clarify common misconceptions, and offer valuable resources for continued learning.
Pre-Clinical SIG Webinar: Modern Algorithms for Animal Randomization in Preclinical Studies
A 1 hour online event, that includes a presentation followed by Q&A.
This webinar will first define terminology in causal inference/data fusion and illustrate their use with two case studies.
Date: 19 November 2025
This event is aimed at students with an interest in the field of Medical Statistics, for example within pharmaceuticals, healthcare and/or medical research.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
PSI Book Club Lunch and Learn: Communicating with Clarity and Confidence
If you have read Ros Atkins’ book The Art of Explanation or want to listen to the BBC’s ‘Communicator in Chief’, you are invited to join the PSI Book Club Lunch and Learn, to discuss the content and application with the author, Ros Atkins. Having written the book within the context of the news industry, Ros is keen to hear how we have applied the ideas as statisticians within drug development and clinical trials. There will be dedicated time during the webinar to ASK THE AUTHOR any questions – don’t miss out on this exclusive PSI Book Club event!
Haven’t read the book yet? Pick up a copy today and join us.
Explanation - identifying and communicating what we want to say - is described as an art, in the title of his book. However, the creativity comes from Ros’ discernment in identifying and describing a clear step-by-step process to follow and practice. Readers can learn Ros’ rules, developed and polished throughout his career as a journalist, to help communicate complex written or spoken information clearly.