This exciting one-day workshop will cover a wide range of statistical aspects relating to event-driven trials. We have assembled a group of very knowledgeable speakers, who will share their thoughts, ideas and experiences, including case studies, on a range of particular issues relating to planning, conduct and analysis of survival and recurrent event trials. The first half of the day will be dedicated to time-to –event endpoints with the afternoon focusing on recurrent event endpoints. Each session will be concluded with a discussion by Prof. Dr. Armin Koch (EMA & Hannover Medical School, Germany). This is a joint event with the BBS (Basel Biometric Section of the Austro-Swiss Region of the IBS);
Discussant: Armin Koch (EMA & Hannover Medical School)
Speaker
Title
Abstract
Lilla Di Scala (Actelion)
“Informative censoring in a rare disease: a regulatory experience in PAH”
There is general awareness of the risks of informative censoring, e.g. when data from patients without follow up beyond end of treatment is not independent of the underlying disease process, therefore introducing bias. However little is present to inform how to mitigate this problem. This leads to a challenge in the context of the statistical and clinical interpretation of study data (Fleming 2009, DeMets 2012). This phenomenon is particularly of note in rare diseases, as study sizes need to be feasible. The sample size and the low event rate, in a time-to-event context, lead to the choice of composite endpoints as primary endpoints and it is likely that the effect of treatment is not uniform across all components. The study design for a potentially life-saving drug in a rare disease can further enhance the informative censoring phenomenon due to the extent (or lack) of post-treatment follow-up. This is a case study using statistical simulations for overcoming the challenges of informative censoring and explaining the potential imbalances across components.
Dominic Magirr (Astra Zeneca)
“Unblinded sample-size reassessment in time-to-event clinical trials”
Mid-study design modifications are becoming increasingly accepted in confirmatory clinical trials, so long as appropriate methods are applied such that error rates are controlled. Unfortunately, the important case of time-to-event endpoints is not easily handled by the standard theory. We analyze current methods that allow design modifications to be based on the full interim data, i.e., not only the observed event times but also secondary endpoint and safety data from patients who are yet to have an event. We show that the final test statistic may ignore a substantial subset of the observed event times, and that this leads to inefficiency compared to alternative sample size re-estimation strategies.
Tobias Bluhmki (Uni Ulm, Germany), Claudia Schmoor (Uniklinik Freiburg, Germany) and Jan Beyersmann ( Uni Ulm, Germany)
“Analyzing non-monotonous time-to-event outcome probabilities in randomized clinical trials”
Common time-to-event efficacy endpoints in randomized clinical trials including leukemia patients after allogeneic stem-cell transplantation (ASCT) are, for instance, overall-survival or the incidence of graft-versus-host-disease (GvHD). Another important measure to assess treatment success is the time undergoing immunosuppressive therapy (IST). Since patients can be subject to multiple episodes of IST during follow-up, standard survival techniques cannot be applied. Instead, more advanced multistate techniques should be used for the analysis. The probabilities of interest are estimated by the Aalen-Johansen estimate, but the methodological complexity is that they are non-monotonous curves in time. In order to still perform a formal statistical treatment comparison, we propose a convenient resampling technique to derive time-simultaneous confidence bands. These bands adequately account for the statistical uncertainty arising in probability estimation.
The method is applied to a recently published study to compare standard GvHD prophylaxis plus pretransplant Grafalon (formerly ATG-Fresenius S = ATG-F) with standard GvHD prophylaxis alone [1-3].
[1] Finke J., Bethge W., Schmoor C., Ottinger H.D, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matchd unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncol 2009, 10:855-64.
[2] Socié G, Schmoor C, Bethge WA et al. Chronic Graft-Versus-Host Disease: Long term results from a Randomized Trial on GvHD Prophylaxis with or without Anti-T-Cell Globulin ATG-Fresenius. Blood 2011, 117:6375-82.
[3] Schmoor C., Schumacher M., Finke J., Beyersmann J. Competing Risks and Multistate Models. Clin Cancer Res 2013, 19(1): 12-21.
Jennifer Rogers (University of Oxford)
“The analysis of recurrent Events: A summary of methodology”
Many chronic diseases are characterised by nonfatal recurrent events. Examples of such include asthma attacks in asthma, epileptic seizures in epilepsy and hospitalisations for worsening condition in heart failure. Analysing all of these repeat events within individuals is more representative of disease progression and more accurately estimates the effect of treatment on the true burden of disease. This talk will start by outlining the different methods that are available for analysing recurrent event data. We shall illustrate and compare various methods of analysing data on repeat hospitalisations using simulated data and data from major trials in heart failure.
Mouna Akacha (Novartis Pharma AG)
"Recurrent event data endpoints in chronic heart failure studies: What is the estimand of interest?”
Heart failure (HF) is a common and serious global health problem affecting approximately 2% of adults in developing countries. Good news is that with new treatments on the market, HF has been converted from a short-term and quickly fatal condition to a chronic disease, which is characterized by recurrent non-fatal events (HF hospitalizations) and relatively low disease-related mortality.
Classical heart failure trials have used a composite primary endpoint of cardiovascular (CV) death and HF hospitalization. This endpoint was then analyzed using a ‘time to first composite event’ analysis.
Various limitations of this endpoint have been raised in recent years. Among others, the ‘time to first composite event’ endpoint is thought to not fully capture the disease burden as it ignores all events that occur after the first event. Given that a number of recent large HF outcome trials have failed to show a clinical benefit for patients using the traditional endpoint, clinical teams are reviewing novel endpoints and estimands that better capture clinical benefit and which adapt to the changing disease profile.
In this talk, we will discuss different estimands for this setting and touch upon the estimation of those estimands
Ekkehard Glimm (Novartis Pharma AG)
“ Group-sequential and adaptive designs for recurrent event data”
In this talk, we will investigate methods for the analysis of recurrent event data in group-sequential and adaptive trial designs. The talk will consider several ways of approximating the information fraction and the joint distribution of test statistics for the treatment effect in trials with interim analyses when the response is related to recurrent events.
We will look at different ways of condensing the individual data (the complete treatment history and the complete split of the individual’s observation period into the sojourn times in states like “healthy”, “progressed”, “in hospital” etc.), either simply by counting the number of recurrent events in an observation period or by the total time spent in a certain state.
Overdispersed (piecewise) Poisson processes leading to a negative-binomial distribution are a useful tool for such analyses. We will review normal approximations for the event rate estimates in such data, investigate how the usual approximations can be refined by incorporating information about the actual individual observation times and investigate via simulations how these approximations hold up in finite sample cases and in situations where the reality deviates from assumptions (for example because event rates are non-constant).
Registration costs and deadline
Registration on or before 24th August
PSI Member
£120 + VAT
Non- Member
£160 + VAT
Academic
£60 + VAT
Registration after 24th August
PSI Member
£160 + VAT
Non- Member
£220 + VAT
Academic
£90 + VAT
If you are a BBS member please contact the PSI secretariat to register with the reduced rate.
Tel: +44 (0) 1730 715 235
Joint PSI/EFSPI Visualisation SIG 'Wonderful Wednesday' Webinars
Our monthly webinar explores examples of innovative data visualisations relevant to our day to day work. Each month a new dataset is provided from a clinical trial or other relevant example, and participants are invited to submit a graphic that communicates interesting and relevant characteristics of the data.
PSI Book Club - The Art of Explanation: How to Communicate with Clarity and Confidence
Develop your non-technical skills by reading The Art of Explanation by Ros Atkins and joining the Sept-Dec 2025 book club. You will be invited to join facilitated discussions of the concepts and ideas and apply skills from the book in-between sessions.
This course is aimed at biostatisticians with no or some pediatric drug development experience who are interested to further their understanding. We will give you an introduction to the pediatric drug development landscape. This will include identifying the key regulations and processes governing pediatric development, a discussion on the needs and challenges when conducting pediatric research and a focus on the ways to overcome these challenges from a statistical perspective.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
Pre-Clinical SIG Webinar: AI agents for drug discovery and development
AI agents are large language models equipped with tools that can autonomously tackle challenging tasks. This talk will explore how generative AI agents can enable biomedical discovery.
EFSPI/PSI Causal Inference SIG Webinar: Instrumental Variable Methods
The webinar is targeted at statisticians working in the pharmaceutical industry, and the objective is to 1) provide a basic understanding of IV methodology including how it relates to causal inference, and 2) present two inspirational pharma-relevant applications.
The Pre-Clinical Special Interest Group (SIG) Workshop 2025 will take place over two half-days on 7 - 8 October in Verona, Italy, bringing together experts from industry, academia, and regulatory institutions to discuss key challenges and innovations in pre-clinical research.
PSI Training Course: Introduction to Machine Learning
Four sessions will include ML foundation (including an introduction, data exploration for ML and dimensionality reduction and feature selection), Supervised learning (including support vector machines and model evaluation and interpretation), model optimization and unsupervised learning (including clustering) and advanced topics (including neural networks, deep learning and large language models).
The program will feature insightful sessions led by distinguished invited speakers, alongside a poster session showcasing the latest advancements in the field. Further details will be provided.
Date: 19 November 2025
This event is aimed at students with an interest in the field of Medical Statistics, for example within pharmaceuticals, healthcare and/or medical research.
This networking event is aimed at statisticians that are new to the pharmaceutical industry who wish to meet colleagues from different companies and backgrounds.
Associate Director Biostatistics in Early Development - Novartis
As an Associate Director Biostatistics Early Development, you will be a key member of our biostatistics group, you will play a crucial role in the design, analysis, and interpretation of clinical trials for early development programs.
Associate Director Biostatistics, Real World Data - Novartis
If you are passionate about biostatistics and real-world data, and are looking for an exciting opportunity to contribute to groundbreaking research, we encourage you to apply.
Are you passionate about making a difference in the world of healthcare? Novartis is seeking a dynamic and experienced professional to join our team in London at The Westworks.
Director of HTA Biostatistics & Medical Affairs - Novartis
As the Director of HTA Biostatistics & Medical Affairs, you will play a pivotal role in shaping the future of healthcare by providing strategic biostatistical leadership and expertise.
As a Senior Principal Biostatistician, you will be responsible and accountable for all statistical work, both scientific and operational, for one or more assigned clinical trials
We use cookies to collect and analyse information on site performance and usage, to provide social media features and to enhance and customise content and advertisements.
Cookies used on the site are categorized and below you can read about each category and allow or deny some or all of them. When categories than have been previously allowed are disabled, all cookies assigned to that category will be removed from your browser.
Additionally you can see a list of cookies assigned to each category and detailed information in the cookie declaration.
Some cookies are required to provide core functionality. The website won't function properly without these cookies and they are enabled by default and cannot be disabled.
Amazon Web Services offers a broad set of global cloud-based products including compute, storage, databases, analytics, networking, mobile, developer tools, management tools, IoT, security, and enterprise applications.
Microsoft Azure is a cloud computing platform offering a wide range of services, including virtual machines, databases, and AI tools.
ARRAffinity
ARRAffinitySameSite
Preferences
Preference cookies enables the web site to remember information to customize how the web site looks or behaves for each user. This may include storing selected currency, region, language or color theme.
Analytical cookies
Analytical cookies help us improve our website by collecting and reporting information on its usage.
Vimeo, Inc. is an American video hosting, sharing, services provider, and broadcaster. Vimeo focuses on the delivery of high-definition video across a range of devices.
Cookies used on the site are categorized and below you can read about each category and allow or deny some or all of them. When categories than have been previously allowed are disabled, all cookies assigned to that category will be removed from your browser.
Additionally you can see a list of cookies assigned to each category and detailed information in the cookie declaration.
Some cookies are required to provide core functionality. The website won't function properly without these cookies and they are enabled by default and cannot be disabled.
Necessary cookies
Name
Hostname
Vendor
Expiry
ARRAffinity
.psiweb.org
Session
This cookie is set by websites run on the Windows Azure cloud platform. It is used for load balancing to make sure the visitor page requests are routed to the same server in any browsing session.
ARRAffinitySameSite
.psiweb.org
Session
Used to distribute traffic to the website on several servers in order to optimize response times.
__cf_bm
.vimeo.com
Cloudflare, Inc.
1 hour
The __cf_bm cookie supports Cloudflare Bot Management by managing incoming traffic that matches criteria associated with bots. The cookie does not collect any personal data, and any information collected is subject to one-way encryption.
_cfuvid
.vimeo.com
Session
Used by Cloudflare WAF to distinguish individual users who share the same IP address and apply rate limits
__cf_bm
.glueup.com
Cloudflare, Inc.
1 hour
The __cf_bm cookie supports Cloudflare Bot Management by managing incoming traffic that matches criteria associated with bots. The cookie does not collect any personal data, and any information collected is subject to one-way encryption.
AWSALBTGCORS
psi.glueup.com
7 days
AWS Classic Load Balancer Cookie: Load Balancing Cookie: Used to map the session to the instance. Same value as AWSELB.
PHPSESSID
psi.glueup.com
Session
Cookie generated by applications based on the PHP language. This is a general purpose identifier used to maintain user session variables. It is normally a random generated number, how it is used can be specific to the site, but a good example is maintaining a logged-in status for a user between pages.
Used by CookieHub to store information about whether visitors have given or declined the use of cookie categories used on the site.
Preferences
Preference cookies enables the web site to remember information to customize how the web site looks or behaves for each user. This may include storing selected currency, region, language or color theme.
Preferences
Name
Hostname
Vendor
Expiry
vuid
.vimeo.com
400 days
These cookies are used by the Vimeo video player on websites.
AWSALBCORS
psi.glueup.com
7 days
Amazon Web Services cookie. This cookie enables us to allocate server traffic to make the user experience as smooth as possible. A so-called load balancer is used to determine which server currently has the best availability. The information generated cannot identify you as an individual.
Analytical cookies
Analytical cookies help us improve our website by collecting and reporting information on its usage.