

PSI Journal Club, 1 December 2009

Action following the discovery of a global association between the whole genome and adverse event risk in a clinical drug-development programme

John Whitehead, Patrick Kelly, Yinghui Zhou, Nigel Stallard, Helene Thygesen and Clive Bowman

Medical and Pharmaceutical Statistics Research Unit

Director: Professor John Whitehead

Tel: +44 1524 592350 Fax: +44 1524 592681

E-mail: j.whitehead@lancaster.ac.uk

MPS Research Unit
Department of Mathematics and Statistics
Fylde College
Lancaster University
Lancaster LA1 4YF, UK

Context

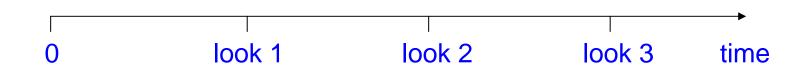
A major drug development programme, in which Drug A is to be compared with placebo

It is known that a particular form of ADR is a potential risk for patients receiving this drug

If ADRs are observed on Drug A with excessive frequency, what actions are possible?

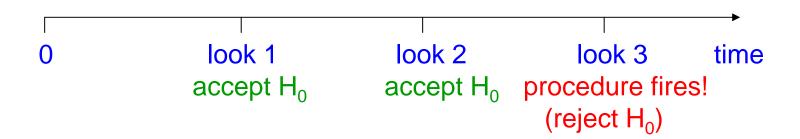
- (a) continue drug development without change
- (b) abandon drug development
- (c) continue drug development, excluding high risk patients

Which patients are at high risk?


Those who are genetically pre-disposed to react badly to Drug A

If all patients with ADRs are genotyped, and some or all of the others, or genetic data are available from a comparable reference population, then we can seek a high risk subgroup

Should we exclude high risk patients?


Yes: if the cost of suffering the ADR exceeds the cost of leaving the disease untreated

The search for a genetic effect on ADRs

- Test the hypothesis H_0 : no SNP influences P(ADR)
- Test once or many times
- Allow for multiplicity of SNPs (permutation tests)
- Control the type I error rate (Kelly et al., 2006)

The search for a genetic effect on ADRs

- P(procedure ever fires $| H_0 \rangle = \alpha$
- When it fires, we know that there is a genetic effect on ADRs
- We don't know where the effect lies (at which SNPs)

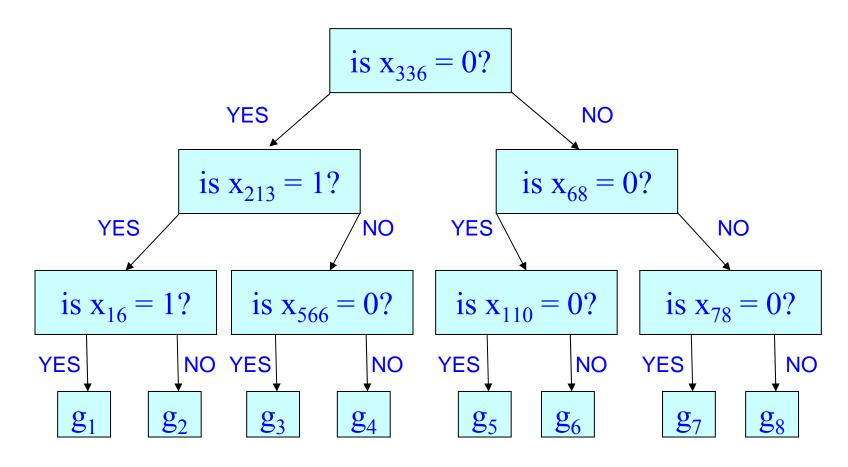
Finding where the genetic effect lies

Method 1: The LASSO

Fit a logistic regression model:

$$\log\left(\frac{P(ADR)}{1-P(ADR)}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

where $x_{j(a)}$ and $x_{j(b)}$ represent the jth of q SNPs (p = 2q)


Find log-likelihood, ℓ, and maximise

$$\ell(\beta_1,...,\beta_p) - \lambda \sum_{j=1}^{q} \{ |\beta_{j(a)}| + |\beta_{j(b)}| \}$$

- The LASSO will usually set most β_i s to zero
- The other β_i s will be shrunken relative to standard estimates
- The magnitude of the *tuning parameter* λ governs the number of non-zero $\beta_i s$
- The result is a manageable model of the genetic effect on ADRs

Finding where the genetic effect lies

Method 2: CART (Classification and Regression Trees)

- Each split maximises the difference between the two groups in terms of ADR incidence
 - -for example in terms of deviance
- Keep the group with more ADR risk on the right
- Stop when each group is sufficiently homogeneous or sufficiently small
- The result is a series of genetic groups with differing ADR risks

Deciding who should be excluded

E: Receiving the experimental therapy (Drug A)

D: Failing to control the disease $-\cos t d$

A: Suffering an ADR $-\cos t a$

Assume that the cost of both is d + a

The *utility* of excluding patients in set S is

$$U = \sum_{g \in S} h(g) \Big\{ dP(D|g, E) + aP(A|g, E) - dP(D|g, \overline{E}) - aP(A|g, \overline{E}) \Big\}$$

This is the difference, per patient, between the expected cost of administering the drug and the expected cost of withholding it

Deciding who should be excluded

The exclusion set S will be chosen to maximise U

If D is independent of genetic factors, then a patient in genetic group g should be excluded if

$$P(A|g,E)-P(A|g,\overline{E})>(d/a)\{P(D|\overline{E})-P(D|E)\}$$

Deciding who should be excluded

$$P(D|\overline{E})-P(D|E)$$
 is found from external data or from design assumptions

$$P(A|g,\overline{E})$$
 will often be zero

$$P(A|g,E)$$
 is found from LASSO, CART or similar

 $h(g) = P(patient \in g)$ can be estimated from the data to allow calculation of P(exclusion) and $P(ADR \mid included)$

Examples

DATA:

from two GSK trials of abacavir in HIV infection

ADR:

hypersensitivity

SCENARIOS:

artificially constructed, using real genotypes and ADRs

External information

$$P(D|\overline{E}) - P(D|E) = 0.5$$

$$P(A|g,\overline{E}) = 0$$

$$a/d=5$$

 hypersensitivity is 5 times worse than failure to control the HIV

So patients should be excluded if

Scenario 1

The following data cause concern:

	ADR	No ADR
Drug A	52	593
Placebo	0	650

The risk of an ADR on Drug A is 8.8%

All patients have been genotyped

A significant association between ADR and genotype is found

The LASSO

Applied to the 52 cases and 593 fixed controls

Choose the tuning parameter $\lambda = 9$, and then we find

$$\log \left(\frac{P(ADR)}{1 - P(ADR)} \right) =$$

$$-2.691 + 2.166x_{336a} + 0.018x_{410a} + 0.014x_{825b} - 0.079x_{847a}$$

leading to 16 genetic groups

Excluded genetic groups from the LASSO method

genetic group, g _i	X _{336a}	X _{410a}	X _{825b}	X _{847a}	h(g _i)	$P(A g_i, E)$	cases excluded ¹	controls excluded ²
g_1	1	0	0	0	0.012	0.372	4 (28)	3
g_2	1	0	0	1	0.010	0.353	1 (19)	5
g_3	1	0	1	0	0.008	0.375	3 (32)	2
g_4	1	0	1	1	0.002	0.357	0 (27)	1
g_5	1	1	0	0	0.007	0.376	4 (14)	0
g_6	1	1	0	1	0.003	0.358	0 (19)	2
g_7	1	1	1	0	0.012	0.379	7 (20)	0
g_8	1	1	1	1	0.007	0.361	3 (15)	1

¹Cases excluded amongst the 52 used in the example (and amongst the remaining 478 in the dataset)

²Controls excluded amongst the 593 used in the example

Action:

Exclude patients in genetic groups $g_1, ..., g_8$

- -that is if $x_{336a} = 1$ (the genotype at locus 336 is **not** aa)
- This excludes patients if $P(A|g_i, E) \ge 0.10$
- From cross-validation:
 - 24 cases from 52 excluded (46% sensitivity)
 - 19 controls from 593 excluded (97% specificity)
- Of the 478 cases not used in the model, 174 (36%) excluded
- Leads to the inclusion of 93.9% of patients, with an ADR risk of 6.2% (rather than 8.8%)
- The estimated utility of the policy is U = 0.0164a per patient

Scenario 2

The monitoring method of Kelly et al. (2006) is used

This compares the genotypes of emerging cases of ADR with those of a reference population of fixed controls

A sequential plan with up to 20 looks at the data was devised: type I error was controlled at 0.05

After 18 ADRs on drug A, the procedure stopped

Excluded genetic groups from CART

genetic group	specification of g _i	h(g _i)	$P(A g_i, \Pi)$	$P(A g_i, E)$	cases excluded ¹	controls excluded ²
g_4	$x_{61}=1; x_{556}=2; x_{751}=1; x_{821}=2$	0.009	0.60	0.913	3 (5)	2
g ₇	$x_{336}=0; x_{437}=1; x_{586}=0,1; x_{809}=1$	0.065	0.20	0.639	1 (2)	4
g_8	$x_{336}=0; x_{437}=1; x_{568}=2$	0.009	0.80	0.965	4 (3)	1
g ₁₀	$x_{64}=0,2; x_{169}=1,2;$ $x_{336}=1,2$	0.012	0.29	0.739	2 (40)	5
g ₁₁	$x_{64}=0,2; x_{169}=0; x_{336}=1,2$	0.012	0.99	1.000	7 (45)	0

¹Cases excluded amongst the 18 used in the example (and amongst the remaining 512 in the dataset)

²Controls excluded amongst the 593 used in the example

The table features

$$P(A|g,\Pi)$$
 -probability of an ADR in group g based on the 18 cases and the 593 fixed controls

and

$$P(A|g,E)$$
 -probability of an ADR in group g for a patient on Drug A

To get from the first to the second we use P(A|E) = 0.08

from the US prescribing information for abacavir, and an argument used in matched case-control studies

Action:

Exclude patients in genetic groups g₄, g₇, g₈, g₁₀, g₁₁

- This excludes patients if $P(A|g_i, E) \ge 0.10$
- From cross-validation:
 - 4 cases from 18 excluded (22% sensitivity)
 - 44 controls from 593 excluded (93% specificity)
- Of the 512 cases not used in the model, 174 (36%) excluded
- Leads to the inclusion of 90.1% of patients, with an ADR risk of 2.1% (rather than 8.8%)
- The estimated utility of the policy is U = 0.0893a per patient

Conclusions

- Associations between ADR risk and genotype can be found with controlled risk of false discovery
- A reaction is then needed in terms of conduct of studies
- Exclusion of patients must be based on estimated risks and the relative costs of ADRs and failure to control the disease
- The utility approach can be combined with various methods for estimating ADR risks

References

- Kelly P, Stallard N, Zhou Y, Whitehead J, Bowman C. Sequential genomewide association studies for monitoring adverse events in clinical evaluation of new drugs. *Statistics in Medicine* 2006; 25: 3081-3092.
- Kelly P, Zhou Y, Whitehead J, Stallard, N, Bowman, C. Sequentially testing for a gene-drug interaction in a genomewide analysis. *Statistics in Medicine* 2007 (to appear).
- Roses AD. Pharmacogenetics and Drug Development: The path to safer and more effective drugs. *Nature Reviews Genetics* 2004; **5**: 643-655.
- Roses AD. Genome-wide screening for drug discovery and companion diagnostics. *Expert Opinion in Drug Discovery* 2007; **2**: 489-501.
- Tibshirani R. Regression shrinkage and selection via the Lasso. *Journal of Royal Statistical Society Series B* 1996; **58:** 267-288.
- Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botsterin D and Altman R. Missing value estimation methods for DNA microarrays. *Bioinformatics* 2001; **17:** 520-525.