

OMARS Designs: Factor Screening and Response Surface Optimization in a Single Step

Peter Goos peter.goos@kuleuven.be

KU LEUVEN

Initial OMARS designs ?

- Experimental designs for quantitative factors
- Every factor is studied at three levels
- Therefore, they are called **response surface** designs
- All main effects are orthogonal to each other
- Therefore, they are called **orthogonal** designs
- All main effects are orthogonal
 - o to all two-factor interactions
 - o to all quadratic effects
- Therefore, they are called **minimally aliased**

Orthogonal **M**inimally Aliased **R**esponse **S**urface designs

Well-known OMARS designs

- Traditional response surface designs
 - Central composite designs
 - Box-Behnken designs
- These designs are "strong" OMARS designs
 - Interaction effects are orthogonal to each other
 - Interaction effects are orthogonal to quadratic effects
 - Can be viewed as resolution V designs
- Definitive screening designs
 - Substantial aliasing among interactions
 - Substantial aliasing between interactions and quadratics
 - A bit better than resolution IV designs

Well-known OMARS designs

- Traditional response surface designs
 - Central composite designs
 - Box-Behnken designs
- These designs are "strong" OMARS designs
 - Interaction effects are orthogonal to each other
 - Interaction effects are orthogonal to quadratic effects
 - Can be viewed as resolution V designs
- Definitive screening designs (SMALL)
 - Substantial aliasing among interactions
 - Substantial aliasing between interactions and quadratics
 - A bit better than resolution IV designs

Well-known OMARS designs

- Traditional response surface designs (LARGE)
 - Central composite designs
 - Box-Behnken designs
- These designs are "strong" OMARS designs
 - Interaction effects are orthogonal to each other
 - Interaction effects are orthogonal to quadratic effects
 - Can be viewed as resolution V designs
- Definitive screening designs (SMALL)
 - Substantial aliasing among interactions
 - Substantial aliasing between interactions and quadratics
 - A bit better than resolution IV designs

Catalog of OMARS designs

- There is a large variety of OMARS designs (using ILP)
- Bridges the gap between the small definitive screening designs and traditional response surface designs
- Major selling points of OMARS designs:
 - Flexibility in terms of number of runs
 - Better power for quadratic effects
 - Screening and response surface experiment in one
 - Good projection properties
 - OMARS designs rely less on factor sparsity assumption than definitive screening designs
 - Ideal when budget does not allow optimal design of experiments

KU LEl

Better looking color maps

Color map of an OMARS design

Original OMARS designs

- Our original designs are uniform-precision OMARS designs
- Every column in the design matrix has the same number of zeros
- Every main effect can be estimated equally precisely
- The power for detecting an existing main effect is the same for every factor
- The power for detecting a quadratic effect is also the same for every factor
- DSDs belong to the family of uniform-precision OMARS designs

Uniform-precision OMARS design

X1	X2	Х3	X4	X5
-1	-1	-1	-1	-1
-1	-1	1	0	-1
-1	-1	1	1	1
-1	0	-1	0	0
-1	0	0	-1	1
-1	1	-1	1	1
-1	1	0	-1	0
-1	1	1	1	-1
0	-1	-1	1	0
0	-1	0	0	1
0	0	-1	1	-1
0	0	1	-1	1
0	1	0	0	-1
0	1	1	-1	0
1	-1	-1	-1	1
1	-1	0	1	0
1	-1	1	-1	-1
1	0	0	1	-1
1	0	1	0	0
1	1	-1	-1	-1
1	1	-1	0	1
1	1	1	1	1

Numbers of uniform-precision OMARS designs

							nruns			
		14	16	20	22	24	26	27	28	30
	#sol	1	1	2	4	25	519	7	485	$8,\!864$
m = 6	#nodes	82	250	502	2,532	$16,\!252$	$718,\!458$	$704,\!220$	$1,\!173,\!594$	$39,\!415,\!295$
	time	6s	13s	20s	69s	457s	7.7h	$6.9\mathrm{h}$	12h	15.9d
	#sol	1	1	1	1	5	549	0	106	20,019
m = 7	#nodes	60	262	634	832	13,726	$2,\!053,\!001$	$372,\!331$	$4,\!263,\!183$	$555,\!221,\!657$
	time	25s	100s	158s	128	1702s	$5.4\mathrm{d}$	$21.1\mathrm{h}$	8.9d	4.4y
	#sol	-	1	1	0	3	853	-	9	11
m = 8	#nodes	-	110	646	236	$11,\!985$	$6,\!807,\!971$	-	9,497,041	$11,\!900,\!209$
	time	-	113s	572s	99s	$3.1\mathrm{h}$	3m	-	$6.2\mathrm{m}$	$5.6\mathrm{m}$

Numbers of uniform-precision OMARS designs

					nruns		
		31	32	34	35	36	40
	#sol	37	$69,\!677$	$227,\!902$	258	$65,\!836$	-
m = 6	#nodes	$50,\!649,\!649$	$358,\!608,\!938$	$976,\!161,\!360$	$1,\!644,\!770,\!934$	$226,\!213,\!340$	-
	time	16.5d	$5\mathrm{m}$	1.9y	4.4m	2.8m	-
	#sol	9	49,269	$16,\!952$	3	57,727	$1,\!656$
m = 7	#nodes	$712,\!279,\!617$	$280,\!674,\!367$	430,079,736	$3,\!140,\!152,\!715$	$3,\!366,\!592,\!634$	72,419,243,247
	time	4.7y	19.7y	3.5y	20.2y	22.2y	2.3y
	#sol	-	31	0	-	0	284
m = 8	#nodes	-	$981,\!101,\!888$	86,365	-	269,792,124	$23,\!824,\!792,\!213$
	time	-	106.5y	16.4h	-	25.3y	28.8y

KU LEU

VEN

What if ...

- ... you have prior knowledge concerning factor effects?
- ... you have specific desires for certain factors?
- ... you may know certain factors are unlikely to have quadratic effects?
- ... you may care more about certain main effects than others?
- ... you may wish to study certain quadratic effects in more detail than others?
- ... certain factors are categorical and have only two levels?

Then ...

- ... you do not want the same precision and the same power for every main effect
- ... you do not want the same power for every quadratic effect
- ... you do not want the same number of zeros in every column of your OMARS design
- ... you need a non-uniform precision OMARS design
- ... you need to make a small modification to our construction method (integer programming) to broaden the spectrum of OMARS designs

Then ...

- ... you do not want the same precision and the same power for every main effect
- ... you do not want the same power for every quadratic effect
- ... you do not want the same number of zeros in every column of your OMARS design
- ... you need a non-uniform precision OMARS design
- ... you need to make a small modification to our construction method (integer programming) to broaden the spectrum of OMARS designs
- ... and you will find many more OMARS designs

Total numbers of OMARS designs

#runs/#factor	•													
s	3	4	5	6	7	8	9	10	11	12	13	14	15	16
14	46	128	11	4	2									
16	159	190	152	61	8	3								
18	198	359	552	171	30	11								
20	572	1,621	5,569	5,117	997	171	7	3						
22	1,438	5,788	42,262	97,792	37,941	3,021	145	6						
24	1,921	12,765	168,045	886,015	1,919,652	142,192	12,637	1,658	152	35				
26	2,235	21,482	807,530	9,611,789	5,086,943	1,815,173	898,596	287,208	298,799	1,426	7			
28	492	3,285	91,111	1,022,895	1,255,206	265,213	37,228	7,676	1,505	487	93			
30	1,263	18,761	1,822,824	27,311,163	55,340,120	26,620,971	3,231,476	60,050	560	31	8	1		
32	33	656	5,177	47,237	114,145	99,398	47,574	17,237	3,594	430				
34	38	651	8,564	139,985	171,785	15,654	878	177	27	15	4	4	1	1
36	64	2,157	38,368	1,926,480	4,971,761	1,646,150	53,536	669	11	1	1	1		
38	95	4,420	137,380	15,097,844	7,034,284	3,086,804	28,877	232	27	15	4	4	1	1
40	129	9,688	919,100	59,240,843	66,439,987	7,590,489	983,545	12,560	26	13	3	3	1	1
TOTAL	8,683	81,951	4,046,645	115,387,396	142,372,861	41,285,250	5,294,499	387,476	304,701	2,453	120	13	3	3
GRAND TOTAL	309,172,054													

- We were able to create OMARS designs where
 - Some quantitative factors have three levels
 - Other factors have two levels
- Special case where certain columns have no zeros
- Useful when you want to study certain factors at two levels
 - Two-level categorical factors
 - Quantitative factors without quadratic effects
- Mixed-level OMARS designs preserve the orthogonality and minimal aliasing property (unlike definitive screening designs)

1	0	-	+	+	+	+	+	-	13	0	-	+	-	-	-	-	+
2	0	+	-	-	-	-	-	+	14	0	+	-	+	+	+	+	-
3	-	0	+	+	+	-	-	-	15	-	0	-	+	-	+	+	+
4	+	0	-	-	-	+	+	+	16	+	0	+	-	+	-	-	-
5	-	-	0	-	+	-	+	+	17	-	+	0	-	-	+	-	-
6	+	+	0	+	-	+	-	-	18	+	-	0	+	+	-	+	+
7	-	-	-	0	-	-	+	-	19	-	+	+	0	-	-	+	-
8	+	+	+	0	+	+	-	+	20	+	-	-	0	+	+	-	+
9	-	+	-	+	+	-	-	+	21	-	-	-	-	+	+	-	-
10	+	-	+	-	-	+	+	-	22	+	+	+	+	-	-	+	+
l1	-	+	+	-	+	+	+	+	23	-	-	+	+	-	+	-	+
12	+	-	-	+	-	-	-	-	24	+	+	-	-	+	-	+	-

1	0 - + 0 0		25	0000-	+		-	+ +	- +	-	+	+	+		+ +
2	0 + 0 0 0	+ + + + +	26	+ 0 0 - 0	+		-	+ +	- +	+	-	-	+		
3	$0 \ 0 \ 0 \ + \ 0$	+ + + + +	27	+ + 0	+		+		+	+	-	+	+	+ -	+ -
4	$0 \ 0 \ - \ + \ +$	+ + + - + +	28	0 - +	+		+	- +	- +	-	+	-	-	+ -	+ +
5	0 0	+ - + - + - + +	29	$0 \ 0 + 0 \ 0$	+		+	+ -	-	-	+	+	+		- +
6	0 + 0 - +	+ + - + + + + - +	30	- + + + -	+		+	+ +		+	-	-	-	+ -	+ -
7	+ 0 -	+ + + + + + + +	31	- + 0	+	- +	-		-	+	+	-	+		+ -
8	+ 0 0 0 0	+ - + + - + + + - + + +	32	+ + 0 0 0	+	- +	-		- +	-	-	-	-	+ ·	- +
9	0 + + 0 +	+ + - + + + + - + -	33	0 - 0 - 0	+	- +	-	+ -	-	-	-	+	-	+ -	+ -
10	- 0 - 0 -	+ + + - + + + - +	34	- 0 0 + +	+	- +	-	+ -	+	+	-	+	-		- +
11	+ 0 0 0 -	+ + + . + . + + .	35	+ 0 + 0 0	+	- +	+		-	+	+	-	+	+ •	- +
12	0 - 0 0 +	+ + + + - + + - + +	36	$0 \ 0 \ - \ + \ 0$	+	- +	+			-	+	+	-		
13	$0 \ 0 + - 0$	+ + - + + + + + +	37	0 + 0 0 -	+ -	+ -	-		+	-	+	+	-	+ ·	
14	- 0 - 0 0	+ + + + + + -	38	- 0 0 0 +	+ -	+ -	-			+	-	+	+	+ ·	- +
15	+ 0 0	+ - + - + - + - + + + + -	39	+ 0 + 0 +	+ -	+ -	-			+	+	+	-		+ -
16	0 + 0 + 0	+ - + - + + + + - + +	40	0 0 -	+ -	+ -	-	+ -	-	+	+	-	-	+ •	- +
17	0 0 0	+ - + + + + + + - + -	41	- 0 0 0 0	+ -	+ -	+		+	-	-	-	+		
18	+ - + + 0	+ - + + + + + - + - +	42	+ + - 0 +	+ -	+ -	+	+ -	-	-	-	-	-		+ +
19	+ +	+++++++++++++++++++++++++++++++++++++	43	0 - 0 + -	+ -	+ +	-			-	-	-	+		+ +
20	0 0 - 0 0	++++++-	44	$0 \ 0 + + +$	+ -	+ +	-	+ -	+	-	+	-	+	+ -	+ -
21	+ + 0 + -	++-+	45	$0 \ 0 +$	+ -	+ +	+		+	+	-	+	-		+ +
22	- + + - 0	+++++++++++++++++++++++++++++++++++++++	46	0 0 0 - 0	+ -	+ +	+	+ +		-	-	+	+	+ ·	
23	-00+0	+++++++++++++++++++++++++++++++++++++	47	0 - 0 0 0	+ -	+ +	+	+ +	- +	+	+	-	-		
24	$0 \ 0 \ 0 \ 0 \ +$. + + + + +	48	0 + - 0 0	+ -	+ +	+	+ +	- +	+	+	+	+	+ -	+ +

																	_															
1	-	-	-	-	-	-	-	-	-	-	15	0	-	0	-	-	+	+	+	-	+	29	+	0	-	+	0	+	-	-	-	-
2	-	-	-	+	- +	- 0	- +	+	+	+	$16 \\ 17$	0	-	+	+	0 \pm	+	-	+	- +	- +	$\frac{30}{31}$	+	0 \pm	0	-	+	-	- +	+	- +	+
4	-	-	+	0	0	+	-	-	-	+	18	0	0	+	+	-	-	+	+	-	-	32	+	+	0	+	-	0	-	+	-	+
5	-	0	0	+	-	+	+	-	+	-	19	0	+	-	-	0	-	+	-	+	+	33	+	+	+	-	+	+	+	-	-	-
6	-	0	+	-	0	-	+	+	+	+	20	0	+	0	+	+	-	-	-	+	-	34 95	+	+	+	+	+	+	+	+	+	+
7	-	0	+	0	+	- 0	+	+	- +	- +	21 22	0	+	+	-	-	-	_	_	+	- +	$\frac{35}{36}$	0	0	0	0	0	0	-	+	+	-
9	-	+	-	0	+	0	-	+	_	+	 23	+	_	0	0	+	-	_	_	_	-	37	0	0	0	0	0	0	-	+	+	_
10	-	+	-	+	0	0	+	-	-	-	24	+	-	0	+	0	-	+	-	+	+	38	0	0	0	0	0	0	+	-	-	+
11	-	+	0	-	0	+	-	+	-	-	25	+	-	+	-	0	0	-	+	+	+	39	0	0	0	0	0	0	+	-	-	+
12	-	+	0	0	- +	+	+	+	+	+	$26 \\ 27$	+	-	+	0	-	0	+	- +	+	-	40	0	0	0	0	0	0	+	-	-	+
$13 \\ 14$	0	_	_	+	+	$\overline{0}$	+	+	-	+	28	+	0	-	0	-	+	-	T-	+	+											
						_																										

A non-uniform precision OMARS design

X1	X2	X3	X4	X1	X2	Х3	X4
1	-1	-1	1	1	0	0	0
0	1	0	1	0	-1	-1	0
0	-1	1	0	0	-1	1	-1
-1	0	1	1	-1	0	1	-1
-1	1	-1	-1	1	1	-1	0
1	-1	1	1	0	1	-1	1
1	0	-1	-1	-1	1	1	0
-1	0	-1	1	1	0	0	0
-1	-1	-1	-1	-1	-1	0	1
-1	-1	0	0	1	1	1	1
1	1	1	-1	1	-1	0	-1
-1	1	0	0	0	1	0	-1

Color map

σ

GSK's first OMARS design application

The case study

- Goal: find relevant factors and optimal settings to increase biomass
- Factors:
 - Holding Time
 - Inoculum Dilution
 - o Iron
 - ∘ pH
 - Temperature
 - Speed Pump

A powerful combo: OMARS designs and Ambr250 system

EFFEX[™] software

EFFEX	Catalog search
	This is a short guiding intro text about the design database.
Home	Results
My Library	
	This is an empty results page. To start exploring our catalog, first set your requirements for the designs quality using the controls below, and then click on the Apply filters button
	Filters
	Define your experiment
	Design size, powers and aliasing 3-level factors 2-level factors
	Projection properties 6
	Advanced options
	Blocking

The selected OMARS design

- 24 runs
- 3 duplicated test combinations (one of which is the center point)
- Fold-over design
- Non-uniform precision
 - X1-X4 have 6 zeros

- X5 has 8 zeros
- X6 has 10 zeros

Color map on correlations

Projection estimation capacity

- There are 15 subsets of 4 out of 6 factors
- The OMARS design allows estimation of the main-effectsplus-interactions model in any of these subsets

X1	X2	X3	X4	X5	X6
SP	HT	Dil	Fe	Т	рΗ
	\checkmark	\checkmark	\checkmark		\checkmark
\checkmark		\checkmark		\checkmark	\checkmark
\checkmark		\checkmark	\checkmark	\checkmark	
\checkmark		\checkmark	\checkmark		\checkmark
\checkmark	\checkmark	\checkmark		\checkmark	

Projection estimation capacity

- There are 20 subsets of 3 out of 6 factors
- The OMARS design allows estimation of the full quadratic response surface model in any of these subsets

Results

- Active factors: Speed Pump, Iron, Temperature, pH
- Inactive factors: Holding Time, Inoculum Dilution
- Optimal settings:

Bernard Francq (Lead Statistician, GSK Biologicals)

Presentation at ENBIS conference

OMARS DOE

Tremendous impact of the very new and promising OMARS DOE in pharma industry for quicker access to new vaccines

Bernard G Francq, Pascal Gerkens

Pierre-Yves Vitry, Emilie Ansel, Laurent Ferrant

DOE in Pharma Industry

- Screening and optimization are 2 distinct phases
- You need a 1st DOE
- Time is needed in between
 - to get the data
 - o to analyze the data
 - o to select the impactful factors
- Then, a 2nd DOE has to be constructed
- Time goes by
 - o to get the data
 - o to analyze the data
 - o to draw conclusions

DOE in Pharma Industry

- Optimization in only one step 22 Screening and optimiza
- You need a 1st DOE
- Time is needed in between
 - \circ to get the data
 - to analyze the data
 - o to select the impactful factors
- Then, a 2nd DOE has to be constructed
- Time goes by
 - to get the data 0
 - to analyze the data 0
 - to draw conclusions

Bernard's conclusions

- The OMARS design allowed GSK to screen 6 fermentation factors and to optimize the productivity with just 24 tests
- With the Ambr system, it was possible to do so in one week
- The combination of the OMARS design and the Ambr system has saved time and resources
- The vast catalog of OMARS designs allows
 - Screening and optimization to be combined
 - Multi-criteria selection of OMARS designs
 - Can be done in the EFFEX[™] software

EFFEX

A collaborative platform for your experimental plans

11

EFFEX™

- Spin-off company to valorize the OMARS designs (see <u>effex.app</u>)
- 500,000 OMARS Pareto-optimal designs are available in the web-based EFFEX™ software
 - Three-level OMARS designs
 - Mixed-level OMARS designs
 - Orthogonally blocked OMARS designs
- Multi-criteria design selection
- If interested, visit the website or talk to me

Maria Lanzerath (Global Statistics Leader, W. L. Gore & Associates)

KU LEUV<u>EN</u>

Step	Factor	Unit	Low	High	No. Levels	Symbol
Polymerization					3	X1
Polymerization		DENITIAL			3	X2
Coagulation	CONFI				2	X3
Coagulation	_				2	X4
Coagulation	Coag Temp	$^{\circ}\mathrm{C}$	40	65	3	X5
Coagulation	Wash Temp	$^{\circ}\mathrm{C}$	50	85	3	X6
Coagulation	No. Cycles		6	12	2	X7
Drying	Drying Temperature	$^{\circ}\mathrm{C}$	130	150	3	X8

-	Factors	X1	X2	Х3	X4	X5	X6	X7	X8
-	X1	Η	NO	L	L	NO	NO	NO	NO
	X2		Η	Μ	Ţ	NO	NO	L	NO
	X3			NO	Η	Η	L	М	L
	X4				NO	Η	\mathbf{L}	М	L
	X5					Н	L	L	NO
	X6						Η	Η	NO
	X7							NO	L
	X8								Η

Factors	X1	X2	Χ3	X4	X5	X6	X7	X8
X1	Η	NO	I	L	NO	NO	NO	NO
X2		Η	М	\mathbf{L}	NO	NO	Τ.	NO
X3			NO	Η	Η	\mathbf{L}	М	\mathbf{L}
X4				NO	Η	\mathbf{L}	М	\mathbf{L}
X5					Η	L	L	NO
X6						Η	Η	NO
X7							NO	L
X8								Η

OMARS design

X1	X2	Х3	X4	X5	X6	X7	X8
-1	1	1	-1	0	0	1	-1
0	1	-1	-1	1	0	-1	-1
-1	-1	-1	-1	1	1	1	0
1	-1	-1	1	0	0	-1	1
1	1	1	1	1	1	1	1
-1	0	-1	1	-1	0	1	1
1	0	1	-1	1	0	-1	-1
1	-1	-1	1	1	-1	1	-1
0	-1	1	-1	0	-1	-1	1
1	0	-1	-1	0	1	-1	1
-1	-1	1	1	1	1	-1	0
-1	-1	-1	-1	-1	-1	-1	-1
1	1	1	1	-1	-1	-1	0
-1	1	-1	1	1	-1	-1	1
0	1	-1	1	0	1	1	-1
0	-1	1	1	-1	0	1	1
-1	1	1	-1	-1	1	-1	1
1	1	-1	-1	-1	-1	1	0
0	0	-1	-1	0	0	1	1
0	0	-1	1	-1	1	-1	-1
0	0	1	-1	1	-1	1	1
0	0	1	1	0	0	-1	-1
1	-1	1	-1	-1	1	1	-1
-1	0	1	1	0	-1	1	-1

How to get the design ?

- 81 mixed-level OMARS designs involving 24 runs
- Select 15 designs with a power of 0.96 for main effects
- Select 5 designs with a minimum power of 0.9 or more for an interaction effect
- Select the one design without perfect aliasing
- Can estimate all main-effects-plus-two-factor-interactions
 models involving
 - $_{\circ}$ any pair of three-level factors and 3 two-level factors
 - any set of 3 three-level factors and 2 two-level factors
 - any set of 4 three-level factors and one two-level factor

24-run OMARS design

Color Map on Correlations

22-run DSD

26-run DSD

Color Map on Correlations

KU LEUVEN

|r|

0

24-run OMARS design

Color Map on Correlations

22-run DSD

Color Map on Correlations

26-run DSD

Color Map on Correlations

References

- José Núñez Ares & Peter Goos (2020) Enumeration and Multicriteria Selection of Orthogonal Minimally Aliased Response Surface Designs, Technometrics, 62:1, 21-36.
- José Núñez Ares, Eric Schoen & Peter Goos (2023) Orthogonal minimally aliased response surface designs for three-level quantitative factors and two-level categorical factors. Statistica Sinica, 33:107– 126.
- José Núñez Ares & Peter Goos (2023) Blocking OMARS designs and definitive screening designs, Journal of Quality Technology, 55:4, 489-509.
- Mohammed Saif Ismail Hameed, José Núñez Ares & Peter Goos (2023) Analysis of data from orthogonal minimally aliased response surface designs, Journal of Quality Technology, 55:3, 366-384.

OMARS Designs: Factor Screening and Response Surface Optimization in a Single Step

Peter Goos peter.goos@kuleuven.be

