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Motivation



– A 12-month, open label, randomised, effectiveness study to evaluate the initiation of 
FF/VI (Relvar - Breo) against continuation of existing COPD maintenance therapy 
(Usual Care)

– Study run in pharmacies in Salford area of Gt. Manchester
– Primary Endpoint: mean annual rate of moderate or severe exacerbations
– 2799 subjects randomised (ITT) with 2269 in the PEA (Primary Efficacy Analysis) 

population*
– Statistical Analysis Complete May 2016

Salford Lung Study for COPD Overview

* - at least one moderate or severe exacerbation in the year prior to Visit 2 (baseline) and was the primary analysis population for the primary endpoint.

SLS COPD



Rate of Moderate or Severe On-treatment
Exacerbations (PEA Population)

Usual Care
N=1134

FF/VI
N=1135

Least Squares (LS) Mean Annual Rate 1.90 1.74

Ratio of FF/VI to Usual Care 0.92

95% CI (0.85, 0.99)

Percent Reduction 8.41%

95% CI (1.12%, 15.17%)

PEA Population (similar results for ITT)

SLS COPD Results



– Relevance of covariates in primary model had been investigated via subgroups
– COPD maintenance therapy at BL

– Number of exacerbations in the previous year (<2, ≥2)

– Smoking status

– Plus many further pre-specified subgroups:
– Age

– Adherence (PDC)

– CAT score

– Targeted Medicine
– Identify patients subgroups, defined  by phenotypes, demographics, substance use and pre-treatment laboratory 

tests, that are more likely to benefit from a FFVI combined therapy over usual-care and achieve better control in 
terms of exacerbation rate compared to the primary results

Reasons Discussed by Steering Committee

Why Run a Subgroup Identification Analysis?



– Choice of GUIDE1 vs SIDES2

• GUIDE focuses on identifying subgroups, which will provide the most gain in overall accuracy in 
exacerbation rate prediction

• SIDES focuses on identifying subgroups, either maximise the differential effect between 
subgroups or maximise the benefits of FFVI over usual care in a single subgroup

• Several other techniques considered
• SIDES chosen due to the team’s focus on maximising benefits within specific subgroups

Choosing the Algorithm

1. Loh, W.-Y., He, X., and Man, M. A regression tree approach to identifying subgroups with differential treatment effects. Stat Med. 2015; 34: 1818-1833
2. Lipkovich I, Dmitrienko A, Denne J, Enas G. Subgroup identification based on differential effect search--a recursive partitioning method for establishing 
response to treatment in patient subpopulations. Stat Med. 2011 Sep 20; 30(21):2601-21.

Maximising Treatment Benefit



The SIDES Algorithm
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Simplified example

SIDES

Etc.

Females

Males

<50 yrs

>=50 yrs

<=2 exac.

>2 exac.

Slice the data
Ignore small subsets

Glossary: exac. = exacerbations in the previous 12 months

Go again…

Šidák-based 
multiplicity adjustment

Males

>=50 yrs

Which subgroups largest 
treatment benefit?

Compare each subset with 
parent group

vs

Resample to 
‘confirm’

pchild ≤ γ *pparent



Classification Characteristics
Demographics Age

Sex
BMI*

Medical history Current medical conditions: hypercholesterolemia, diabetes mellitus, hypertension, cerebrovascular 
accident, CAD, arrhythmia, congestive heart failure, myocardial infarction, asthma
Pneumococcal vaccination
Influenza vaccination

COPD history Duration of COPD
Smoking status
Number of pack-years
Number of exacerbations during the 12 months prior to randomisation

Baseline disease 
characteristics

Baseline CAT score
COPD maintenance therapy at baseline
Post-BD FEV1*: absolute values

Other Socioeconomic status
Adherence (PDC)
Polypharmacy

Identified by Clinical Team

Variables (Features)

*BMI and FEV1 were included in separate sensitivity analyses due to missing data.
BD, bronchodilator; PDC, proportion of days covered.



– SIDES lets us choose:
– Model and Splitting criterion

– Negative binomial model for exacerbations

– Maximise the treatment effect in at least one of the two child subgroups

– Relative improvement factor, γ
– Tuned using 10-fold X-validation

Selection of parameters to control

Algorithm Inputs



Selection of parameters to control

Algorithm Inputs

Area of Control Parameter Description Input

Restrict tree 
width/depth

The number of best promising subgroups selected at each 
stage

5

Maximum number of covariates selected to form the subgroup 3

Number of subjects in 
subgroups

Minimum number of subjects in either half of a split 100

Minimum number of subjects in one treatment arm for a split 30

Type I Error (weak 
control)

Type I error compensation (cut-off level of permutation test) 0.1

Permutations 500

Binning Maximum number of bins for ordinal/continuous covariates 20

Modification 
to original 
algorithm

– As a hypothesis-generating exercise we did not partition our data to create a test set(s)



– For subgroup, the comparison pchild ≤ γ *pparent is made
– Defining γ can be a team decision
– Else use cross-validation

– Extremely computationally intensive
– Not possible on most laptops!

Gamma Tuning

Configuring the Improvement Factor

Our 
approach



Results
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Building the Tree
Using the Full Data

Full Data
(n = 2799)

Non Current Coronary Artery 
Disease

(n = 2244)

Age > 61
(n = 1519)

CAT Score <= 33
(n = 2055)

Polypharmacy > 5
(n = 1731)

Age > 61
(n = 1430)

Polypharmacy > 5
(n = 1573)

Age > 59
(n = 1343)

CAT Score <= 33
(n = 1573)

Round 1

Round 2

Round 3



Building the Tree
‘Best’ Group

Full Data
(n = 2799)

Non Current Coronary Artery 
Disease

(n = 2244)

Age > 61
(n = 1519)

CAT Score <= 33
(n = 2055)

Polypharmacy > 5
(n = 1731)

Age > 61
(n = 1430)

Polypharmacy > 5
(n = 1573)

Age > 59
(n = 1343)

CAT Score <= 33
(n = 1573)



– The primary analysis model was re-fitted against the “best” cluster
– An adjusted 21% reduction in exacerbations could be seen in the best cluster, 

compared with 8.4% in the full ITT population

– So it seemed to ‘work’…

“Best” Cluster vs Original Study

Performance

Cluster Usual Care FF/VI Ratio (95% CI)
Noncurrent coronary artery disease 
and CAT score at baseline <= 33 
and age > 61 years old

N 714 716

LS Mean Annual Rate 1.71 1.35 0.79 (0.71, 0.87)

Full ITT Population Results N 1403 1396

LS Mean Annual Rate 1.64 1.50 0.92 (0.85, 0.99)



Conclusion and Learnings



– Identified a subgroup of patients with noncurrent CAD, baseline CAT score ≤ 33 and 
age >61 years who may be more likely to benefit from initiating FF/VI 100/25µg versus 
continuing UC

– Much larger treatment benefit in this group (21% reduction vs 8% reduction)
– This was a hypothesis-generating exercise (‘learn’ but no ‘confirm’)

– No test dataset was defined and results should be interpreted with caution
– Work is ongoing to validate these findings in an alternative COPD dataset

– ‘Unexpected’ subgroup makes this even more important to test!

Conclusion



– Lack of options for validation limited the impact
– Consider dividing into training and test

– Gamma tuning is computationally intensive
– Consider pre-specifying γ

– SIDES CRAN package has matured
– Consider use of open source rather than in-house maintenance

Learnings



– SIDES algorithm successful in identifying candidate subgroups with an increased 
treatment effect

– Hypothesis yet to be formally tested

Summary
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– R&D Tech for our grid!
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Questions



NEW Data Science SIG
• A new Data Science Special Interest Group is forming
• Targeting both Data Scientists and Statisticians with an interest in Data Science
• Full details to be determined in the New Year
• Please get in contact if you’re interested!
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