

Using the SIDES algorithm to the identify patient phenotypes that have the potential to benefit most from switching to Relvar

Andy Nicholls (Statistics Leader)

Overview of Presentation

- Motivation
 - SLS COPD Study
- SIDES Algorithm (as applied to SLS)
- Results
- Conclusions and Learnings

Motivation

SLS COPD

Salford Lung Study for COPD Overview

- A 12-month, open label, randomised, *effectiveness* study to evaluate the initiation of FF/VI (**Relvar Breo**) against continuation of existing COPD maintenance therapy (**Usual Care**)
- Study run in pharmacies in Salford area of Gt. Manchester
- Primary Endpoint: mean annual rate of moderate or severe exacerbations
- 2799 subjects randomised (ITT) with 2269 in the PEA (Primary Efficacy Analysis) population*
- Statistical Analysis Complete May 2016

* - at least one moderate or severe exacerbation in the year prior to Visit 2 (baseline) and was the primary analysis population for the primary endpoint.

SLS COPD Results

gsk

PEA Population (similar results for ITT)

Rate of Moderate or Severe On-treatment Exacerbations (PEA Population)	Usual Care N=1134	FF/VI N=1135	
Least Squares (LS) Mean Annual Rate	1.90	1.74	
Ratio of FF/VI to Usual Care	0.92		
95% CI	(0.85, 0.99)		
Percent Reduction 95% CI	8.41 (1.12%, 1		

Why Run a Subgroup Identification Analysis?

Reasons Discussed by Steering Committee

- Relevance of covariates in primary model had been investigated via subgroups
 - COPD maintenance therapy at BL
 - Number of exacerbations in the previous year (<2, \geq 2)
 - Smoking status
- Plus many further pre-specified subgroups:
 - Age
 - Adherence (PDC)
 - CAT score

- Targeted Medicine

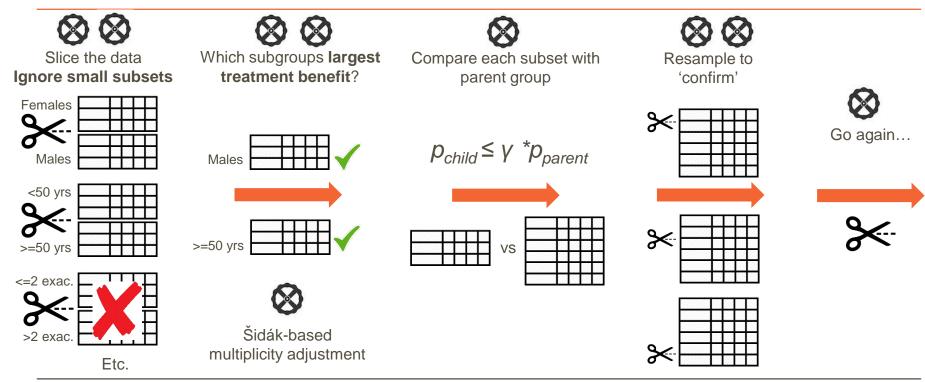
 Identify patients subgroups, defined by phenotypes, demographics, substance use and pre-treatment laboratory tests, that are more likely to benefit from a FFVI combined therapy over usual-care and achieve better control in terms of exacerbation rate compared to the primary results

Maximising Treatment Benefit

Choosing the Algorithm

- Choice of GUIDE¹ vs SIDES²
 - **GUIDE** focuses on identifying subgroups, which will provide the **most gain in overall accuracy in exacerbation rate prediction**
 - SIDES focuses on identifying subgroups, either maximise the differential effect between subgroups or maximise the benefits of FFVI over usual care in a single subgroup
- Several other techniques considered
- SIDES chosen due to the team's focus on maximising benefits within specific subgroups

1. Loh, W.-Y., He, X., and Man, M. A regression tree approach to identifying subgroups with differential treatment effects. Stat Med. 2015; 34: 1818-1833 2. Lipkovich I, Dmitrienko A, Denne J, Enas G. Subgroup identification based on differential effect search--a recursive partitioning method for establishing response to treatment in patient subpopulations. Stat Med. 2011 Sep 20; 30(21):2601-21.



The SIDES Algorithm

SIDES

Simplified example

Variables (Features)

Identified by Clinical Team

Classification	Characteristics
Demographics	Age Sex BMI*
Medical history	Current medical conditions: hypercholesterolemia, diabetes mellitus, hypertension, cerebrovascular accident, CAD, arrhythmia, congestive heart failure, myocardial infarction, asthma Pneumococcal vaccination Influenza vaccination
COPD history	Duration of COPD Smoking status Number of pack-years Number of exacerbations during the 12 months prior to randomisation
Baseline disease characteristics	Baseline CAT score COPD maintenance therapy at baseline Post-BD FEV ₁ *: absolute values
Other	Socioeconomic status Adherence (PDC) Polypharmacy

*BMI and FEV₁ were included in separate sensitivity analyses due to missing data. BD, bronchodilator; PDC, proportion of days covered.

gsk

Selection of parameters to control

- SIDES lets us choose:
 - Model and Splitting criterion
 - Negative binomial model for exacerbations
 - Maximise the treatment effect in at least one of the two child subgroups
 - Relative improvement factor, γ
 - Tuned using 10-fold X-validation

Selection of parameters to control

Area of Control	Parameter Description	Input
Restrict tree width/depth	The number of best promising subgroups selected at each stage	5
	Maximum number of covariates selected to form the subgroup	3
Number of subjects in	Minimum number of subjects in either half of a split	100
subgroups <	Minimum number of subjects in one treatment arm for a split	30
Гуре I Error (weak	Type I error compensation (cut-off level of permutation test)	0.1
control)	Permutations	500
Binning	Maximum number of bins for ordinal/continuous covariates	20

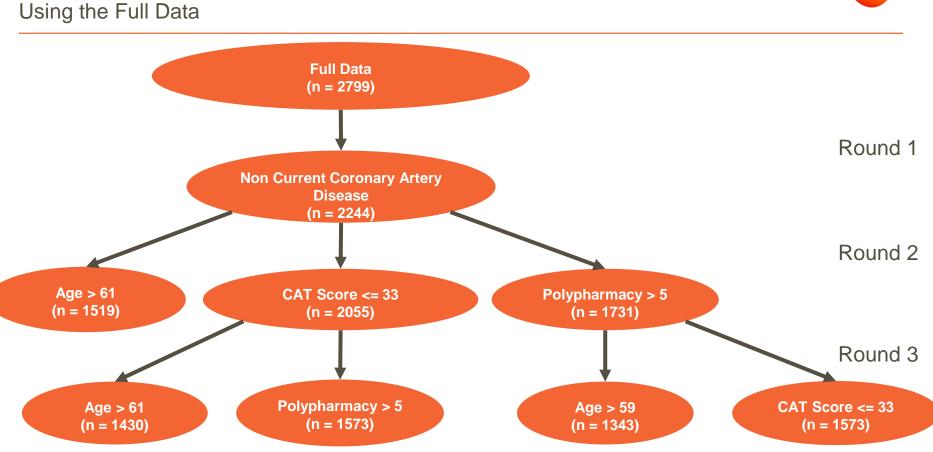
- As a hypothesis-generating exercise we did not partition our data to create a test set(s)

Configuring the Improvement Factor

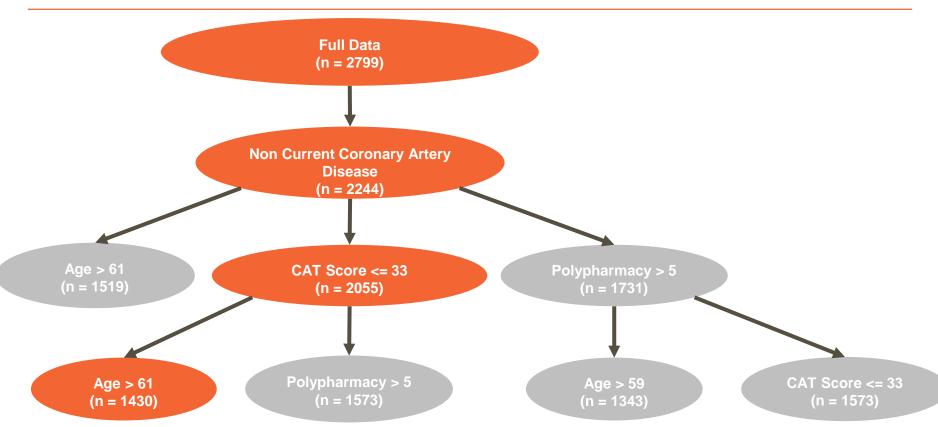
Gamma Tuning

- For subgroup, the comparison $p_{child} \leq \gamma p_{parent}$ is made
- Defining γ can be a team decision
- Else use cross-validation

Our approach


- Extremely computationally intensive
 - Not possible on most laptops!

Results



Building the Tree

Building the Tree

'Best' Group

Performance

"Best" Cluster vs Original Study

- The primary analysis model was re-fitted against the "best" cluster
- An adjusted 21% reduction in exacerbations could be seen in the best cluster, compared with 8.4% in the full ITT population

Cluster		Usual Ca	re FF/VI	Ratio (95% CI)
Noncurrent coronary artery disease and CAT score at baseline <= 33	Ν	714	716	
and age > 61 years old	LS Mean Annual Rate	1.71	1.35	0.79 (0.71, 0.87)
Full ITT Population Results	Ν	1403	1396	
	LS Mean Annual Rate	1.64	1.50	0.92 (0.85, 0.99)

- So it seemed to 'work'...

Conclusion and Learnings

- Identified a subgroup of patients with noncurrent CAD, baseline CAT score ≤ 33 and age >61 years who may be more likely to benefit from initiating FF/VI 100/25µg versus continuing UC
- Much larger treatment benefit in this group (21% reduction vs 8% reduction)
- This was a hypothesis-generating exercise ('learn' but no 'confirm')
 - No test dataset was defined and results should be interpreted with caution
 - Work is ongoing to validate these findings in an alternative COPD dataset
- 'Unexpected' subgroup makes this even more important to test!

- Lack of options for validation limited the impact
 - Consider dividing into training and test
- Gamma tuning is computationally intensive
 - Consider pre-specifying γ
- SIDES CRAN package has matured
 - Consider use of open source rather than in-house maintenance

- SIDES algorithm successful in identifying candidate subgroups with an increased treatment effect
- Hypothesis yet to be formally tested

Acknowledgements

- Harriet Dickinson for doing half the work and providing guidance throughout!
- GSK SLS Governance Team and Scientific Committee for approving this work
- R&D Tech for our grid!

Questions

NEW Data Science SIG

- A new Data Science Special Interest Group is forming
- Targeting both Data Scientists and Statisticians with an interest in Data Science
- Full details to be determined in the New Year
- Please get in contact if you're interested!

