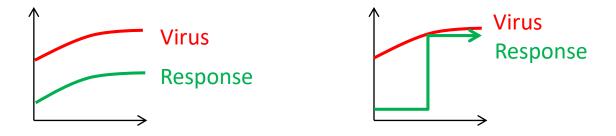
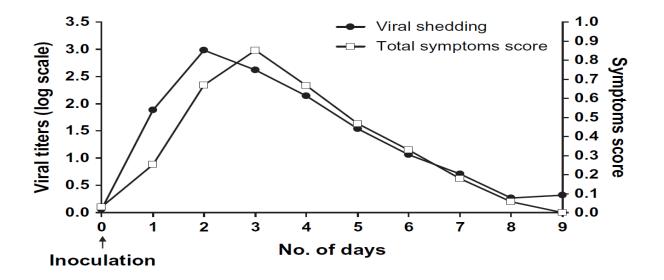


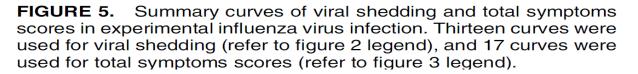
Joint Modelling of Viral Kinetics and Influenza

Symptoms PSI2019 3-6-2019


Jules Hernández-Sánchez Roche Products Itd

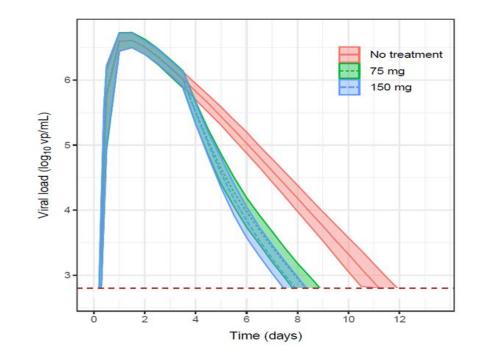
Viruses and Symptoms


- Can we quantify the association between viruses and symptoms?
- Is virus titer a good biomarker for symptoms resolution?
 - A priori, virus IS the "perfect" biomarker
- Do patients that clear viruses faster also resolve symptoms faster?
- Does the immune system response gradually adapt to the severity of infection?



Challenge Studies

Carrat et al. (2018) Am J Epidemiol 2008;167:775-785


Why Does it Matter (in Pharma)?

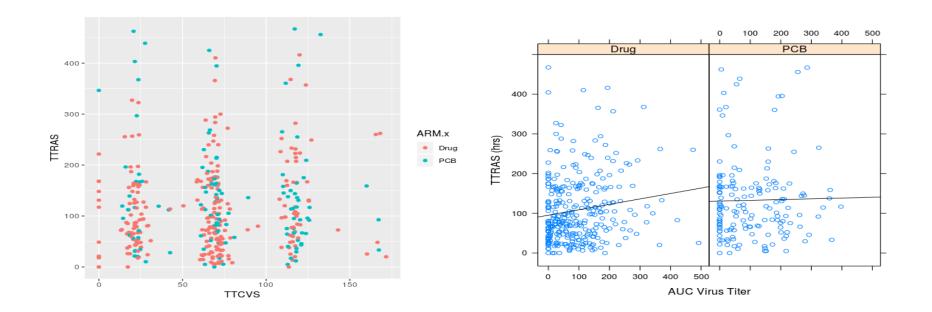
- <u>Efficacy</u> (not virology) is the <u>primary outcome</u> to patients, doctors and regulators
- Anti-virals act directly on viruses... What about symptoms?
- In small studies on immunocompromised (IC) paediatric patients, a <u>disease model</u> helped us <u>extrapolating efficacy</u> from a larger IC adults study (FDA Guidance)
- Disease model links drug exposure with virology but not symptoms
- Would regulators accept extrapolations more readily if a disease model linked exposure to symptoms?

Disease Model

Studies

WV15670

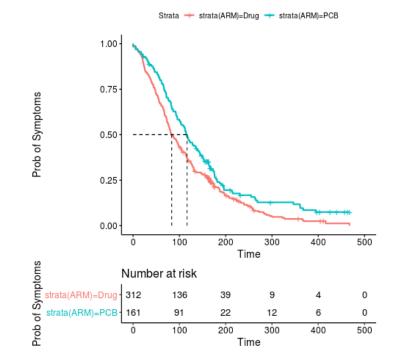
- Randomised, double blind, placebocontrolled, parallel arms* (75 mg b.i.d., 150 mg b.i.d.)
- Centers: 51 European, 11 Canadian, 1 Hong Kong
- OwH adults (18-65y)
- Completers: 223 PCB, 235 75mg, 230 150mg

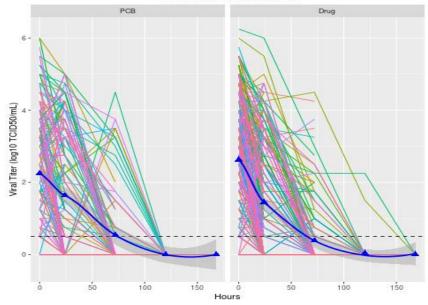

WV15671

- Randomised, double blind, placebocontrolled, parallel arms* (75 mg b.i.d., 150 mg b.i.d.)
- Centers: 57 US
- OwH adults (18-65y)
- Completers: 197 PCB, 194 75mg, 190 150mg

*Both treatment arms will be pooled as there were no differences in TTRAS or TTCVS

Visual Virus-Symptoms Associations



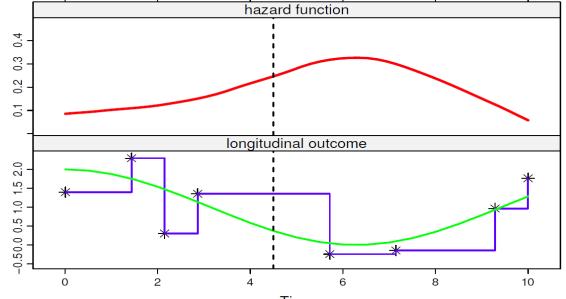


7

Symptoms Resolution - Viral Kinetics

Viral Kinetics

Time-dependent Cox Model


Coxph(Surv(start,stop,event)~arm+virus,data)

Variable	HR (95% CI)	р
Drug	1.4 (1.1 to 1.7)	0.003
Virus	0.95 (0.9 to 1)	0.23

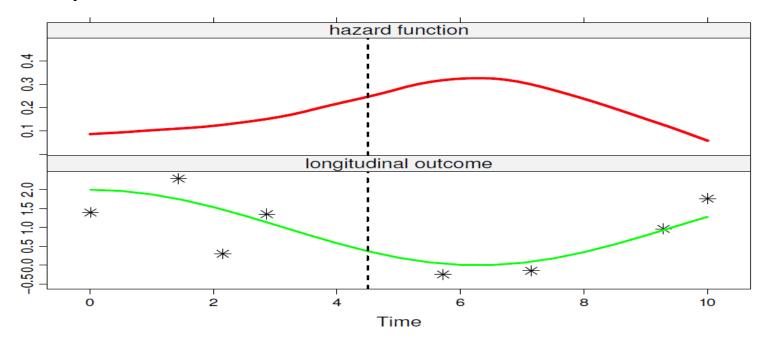
SUBJECT	ARM	RESULT	start	stop	TALLSYMP	event
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1030	Drug	1.25	0	24	93.5	0
1030		0		72	93.5	0
1030	Drug	0	72	93.5	93.5	1
1031	Drug	3.75		24	25.2	0
1031	Drug	2.5	24	25.2	25.2	1
1033	PCB	3.5	0	24	182.	0

The key novelty of Joint Models

Time

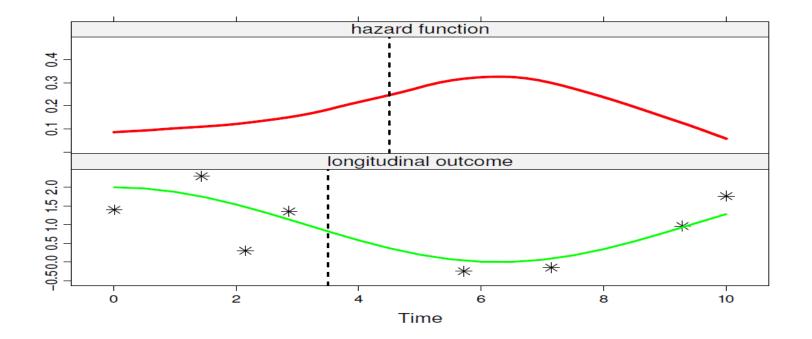
Rizopoulos 2018

Flexibility of Joint Models

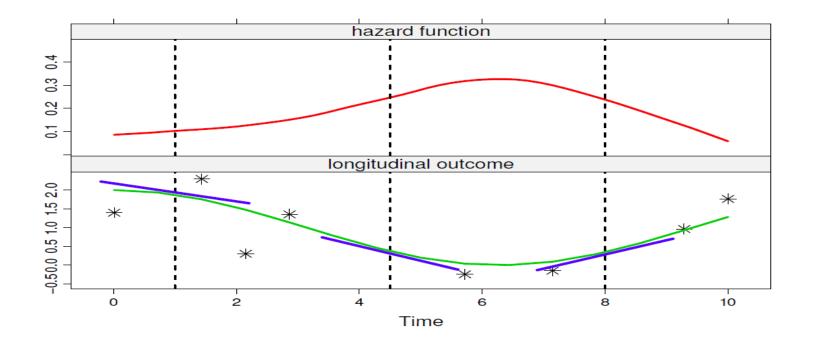


- Instant effect: Viral titer at time t, v(t), affects hazard at time t, h(t)
- Lag: v(t-lag) affects h(t)
- Value and slope: Titer, v(t), and slope, v'(t), affect h(t)
- Random longitudinal parameters: Slope of titer at time t, v'(t), affects h(t)
- **Cummulative**: unweighted AUC viral titer up to time t affects h(t)
- Weighted Cummulative: AUC viral titer up to time t affects h(t) but closer part affects more
- Exogenous covariates, e.g. weather

- Stratified risks, e.g. different hospitals or studies
- Latent classes, e.g. population heterogeneity
- Competing risks, e.g. recovery or death
- Recurrent events, e.g. symptoms rebound
- Accelerated failure times, e.g. non-PH
- **Categorical longitudinal outcomes** (GLMM), e.g. categorical biomarkers (low, medium, high)
- Multiple longitudinal outcomes, i.e. assumed independent


Symptoms | Virokinetics Virokinetics Virus History

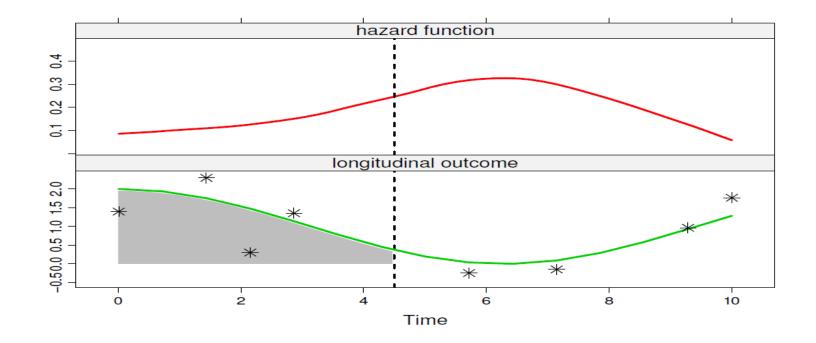
 $\begin{aligned} h_i(t|V_i(t)) \sim h_0(t) exp\{\gamma' w_i + \alpha v_i(t)\} \\ y_i(t) \sim v_i(t) + \varepsilon_i(t) = x_i \ (t)\beta + z_i \ (t)b_i + \varepsilon_i \\ V_i(t) \sim \{v_i(s), 0 \le s < t\} \end{aligned}$


Roche

$$h(t) \sim f(\boldsymbol{v}(t - lag))$$

Roch

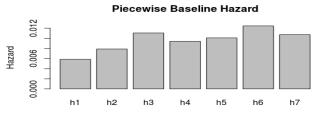
 $h(t) \sim f(v(t), v'(t))$



Rizopoulos 2018

Roche

 $h(t) \sim f(AUC(t))$


16

Joint Model 1 (JM1)

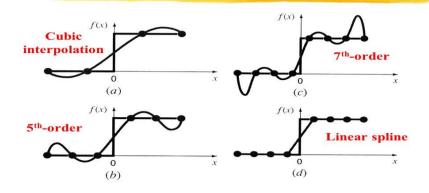
• Virokinetics

- $y = v + e = B_0 + B_1 T + B_2 T^2 + b_0 + b_1 T + e$
- $B_i = fixed effects; b_i = random effects$
- Survival
 - $ttras \sim drug + e$
- Joint Model
 - $h_i(t) = h_0(t)e^{\alpha v + drug} + e$

- Baseline hazard:
 - Assumed piecewise constant PH
 - Alternatives:
 - Weibull-PH
 - Weibull-AFT
 - Cox-PH
 - Spline-PH
 - ch-Laplace

Model	HR (95% CI)	р	AIC
td-Cox	0.95 (0.87 to 1.03)	0.23	4428
JM1	0.95 (0.88 to 1.02)	0.15	9463
JM1: Lag-1h	0.95 (0.88 to 1.02)	0.15	9463
JM1: Lag-18h	0.94 (0.87 to 1.02)	0.12	9463
JM1: titer + slope	0.94 (0.87 to 1.01)	0.21	9462
JM1: Cum	1 (1 to 1)	0.23	9464
JM1: wt Cum	0.88 (0.75 to 1.02)	0.09	9462

N.B. AIC = 2k – 2logL; k=number estimated parameters; logL=log likelihood

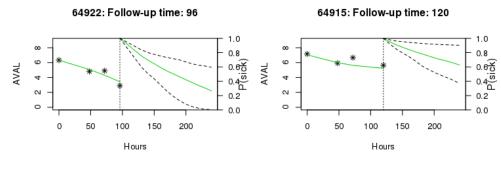

The likelihood function of td-Cox and JM's are so different that it makes no sense to compare them

18

Joint Model 2 (JM2)

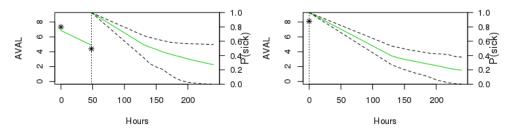
- Virokinetics
 - $\begin{array}{l} -y=v+e=spline(T,df=2)+b_{0}+\\ b_{1}T+e \end{array}$
- Survival
 - ttras = drug + e
- Joint Model
 - $h_i(t) = h_0(t)e^{\alpha v + drug} + e$

Spline Interpolation



Joint Models 2: HR virus

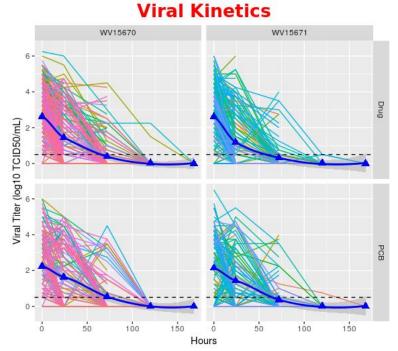
Model	HR (95% CI)	р	AIC
td-Cox	0.95 (0.87 to 1.03)	0.23	4428
JM1	0.95 (0.88 to 1.02)	0.15	9463
JM1: Lag-1h	0.95 (0.88 to 1.02)	0.15	9463
JM1: Lag-18h	0.94 (0.87 to 1.02)	0.12	9463
JM1: titer + slope	0.94 (0.87 to 1.01)	0.21	9462
JM1: Cum	1 (1 to 1)	0.23	9464
JM1: wt Cum	0.88 (0.75 to 1.02)	0.09	9462
JM2	0.89 (0.79 to 1)	0.06	9454
JM2: Lag-1h	0.89 (0.79 to 1)	0.05	9454
JM2: Lag-18h	0.89 (0.8 to 1)	0.04	9454


Dynamic Predictions

61373: Follow-up time: 48

WV15671 (US)

Model	HR (95% CI)	р	AIC
td-Cox	0.99 (0.91 to 1.09)	0.89	3347
JM1	0.96 (0.88 to 1.05)	0.39	7303
JM1: Lag-1h	0.96 (0.88 to 1.05)	0.38	7303
JM1: Lag-18h	0.96 (0.88 to 1.06)	0.46	7303
JM1: titer + slope	NA	NA	NA
JM1: Cum	1 (1 to 1)	0.56	7303
JM1: wt Cum	0.87 (0.71 to 1.07)	0.18	7302
JM2	0.89 (0.76 to 1.05)	0.18	7291
JM2: Lag-1h	0.89 (0.76 to 1.05)	0.18	7291
JM2: Lag-18h	0.93 (0.8 to 1.08)	0.36	7292


Roche

Pooled Analysis

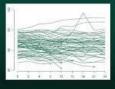
Туре	HR	95% CI
Stratified	1.1	0.88 to 1.35
Unstratified	1.1	0.86 to 1.30

6 to 1.30

Strata

- arm=Drug, strata(study)=WV15670
 arm=Drug, strata(study)=WV15671
- + arm=PCB, strata(study)=WV15670
- → arm=PCB, strata(study)=WV15671

- It is hard to quantify the association between viral kinetics and symptoms resolution
- The strength of the association depends on the sophistication of the model (overfitting?)
- Maybe we need to measure covariates in the biological path connecting viruses with symptoms, e.g. white blood cells
- Although this research is not crucial for filing a new drug, it enhances our understanding of the disease biology and how the immune system fights diseases

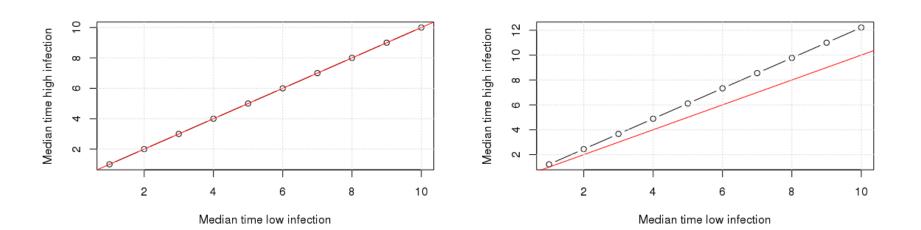

Literature

Nonsparts of Statistics and Applied Producting 251 Joint Modeling of Longitudinal and Time-to-Event Data

Robert M. Elashoff Gang Li Ning Li

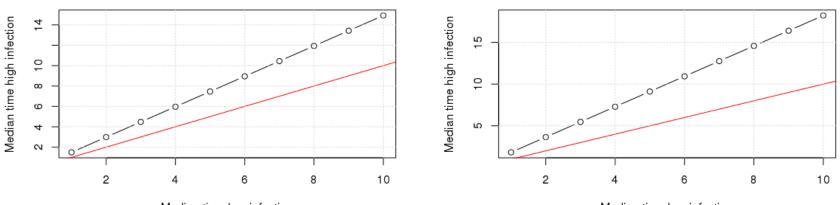
CAC Press Substantion of State

Doing now what patients need next


Back-ups

Predictions of resolution of all symptoms given association

• HR = 1 (α =0)


HR = 0.95 (
$$\alpha$$
=-0.05)

Predictions of resolution of all symptoms given association

• HR = 0.9 (α =-0.1)

HR = 0.86 (
$$\alpha$$
=-0.15)

Median time low infection

Median time low infection

Associations using splines to model baseline hazard

• Association

• P-values

Knots	Linear	Quadratic	Cubic	Knots	Linear	Quadratic	Cubic
0	-0.018	-0.090	-0.113	0	0.754	0.059	0.001
1	-0.050	-0.076	-0.095	1	0.383	0.335	0.194
2	-0.092	-0.105	-0.125	2	0.004	0	0.002
3	-0.124	-0.127	-0.127	3	0.105	0	0
4	-0.135	-0.130	-0.150	4	0	0	0
5	-0.157	-0.157	-0.131	5	0	0	0

Log-likelihoods of td-Cox and joint model

- Contribution to the logL of individual i to a joint model
- $logL_i(\theta) = log \int \left\{ \prod_{j=1}^{n_i} p(y_{ij} | b_i; \theta) \right\} \left\{ h(T_i | b_i; \theta)^{\delta_i} S_i(T_i | b_i; \theta) \right\} p(b_i; \theta) db_i$
- Contribution to the logL of individual i to a td-Cox model
- $logL_i(\theta) = \delta_i \left\{ \sum_{j=1}^p \beta_j x_{ji}(t_i) log \sum_{l \in R(t_i)} exp\left(\sum_{j=1}^p \beta_j x_{jl}(t_i) \right) \right\}$

How complex can the model be?

• Total number of parameters between 1/10 and 1/20 of events (Harrell 2001)

Main Assumption: conditional independence

- $p(y_1, y_2) = \int p(y_1|b)p(y_2|b)db$
- y₁ and y₂ are responses, e.g. both longitudinal, longitudinal and time-to-event...
- b unknown random effects

Doing now what patients need next