PSI 2024 Conference Career Young Session

June 19th , 2024

clement.daniel@servier.com

Controlled multiple imputation in time-to-event data using tipping point analysis

Daniel C., Rincourt S., Delaporte F. and Skanji D.

Overview

- I. Missing data in survival analysis
- II. Tipping Point Analysis (TPA)
- III. Simulation and results
- IV. Conclusion

Missing data in survival analysis

Context

3

Missing data in survival analysis

Methods for missing data: Tipping point analysis

Sensitivity analyses can be performed to evaluate the **robustness** of the endpoint **results** to **deviations** from the **ignorable censoring assumption** (CAR).

Tipping point analysis (**TPA**) is a sensitivity analysis that is increasingly requested by **health authorities**.

- ➢ TPA is based on:
	- Survival model (e.g. Cox, Kaplan Meier) imputation,
	- Controlled multiple imputation.
- ➢ TPA consists of:

Incrementally penalizing (by δ) the imputed event times in the experimental arm until the result between the 2 groups is **no longer statistically significant** (tipping point)

The Tipping Point - interpretation

Tipping Point is defined as the lowest δ value for which the result between the 2 arms is no longer statistically significant

- Example: A **Tipping Point** equal to **3** would mean that:
	- in order to **switch our results** to non-significant,
	- the **hazard** following discontinuation of informatively censored participants from the experimental arm would need to be **3 times larger** than the hazard of similar participants remaining in the study.

The **greater** the Tipping Point, the more **robust** the results are to **deviation** from the **ignorable censoring assumption** (CAR)**.**

Stress-test the results under the non-ignorable censoring assumption (CNAR)

Study the accuracy of the Tipping Point Analysis methods

Identify the parameters of a clinical trial that drive the value of δ

Method: Tipping point analysis in survival analysis

For a participant i discontinued at time c_i ,

- let $h_1(t)$ be his hazard at any given time point t following discontinuation,
- let $h_2(t)$ be his hazard at the same time t if he/she had continued the study.

 $h_1(t) = \delta * h_2(t)$

- **δ = 1**, **same hazard** following discontinuation as **if he had remained in the study**,
- **δ > 1**, **greater hazard** following discontinuation than the one he would've had

δ penalty is only applied to:

- **Informatively** censored participants
- Participants from the **experimental** arm

1. Evaluate the survival function $S(t)^{\delta}$

- 2. For a participant i censored at time c_i , let $p_i = \widehat{S}\,(c_i|x_i,\hat{\beta})^{\textstyle\zeta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat S\, (t | x_i, \hat \beta)^{\textup{\textsf{S}}}$
- 5. Analyze the new dataset with imputed event times

1. Evaluate the survival function $S(t)^{\delta}$

- 2. For a participant i censored at time c_i , let $p_i = \widehat{S}\,(c_i|x_i,\hat{\beta})^{\textstyle\zeta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat S\, (t | x_i, \hat \beta)^{\textup{\textsf{S}}}$
- 5. Analyze the new dataset with imputed event times

KM curves for imputation Control \rightarrow Experimental \rightarrow Degraded experimental, $\delta = 5$ $0.75 -$

- 1. Evaluate the survival function $S(t)^{\delta}$
- 2. For a participant i censored at time c_i , let $p_i = \widehat{S}(c_i|x_i, \hat{\beta})^{\text{S}}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat S\, (t | x_i, \hat \beta)^{\textup{\textsf{S}}}$
- 5. Analyze the new dataset with imputed event times

Control \rightarrow Experimental \rightarrow Degraded experimental, $\delta = 5$ $0.75 -$ Survival probability $0.50 -$

 $p_i = 0.3$ 0.25 0 $c_i = 2$ Ω 6 10 Time (months)

KM curves for imputation

- 1. Evaluate the survival function $S(t)^{\delta}$
- 2. For a participant i censored at time c_i , let $p_i = \widehat{S}\,(c_i|x_i,\hat{\beta})^{\textstyle\zeta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat S\, (t | x_i, \hat \beta)^{\textup{\textsf{S}}}$
- 5. Analyze the new dataset with imputed event times

- 1. Evaluate the survival function $S(t)^{\delta}$
- 2. For a participant i censored at time c_i , let $p_i = \widehat{S}\,(c_i|x_i,\hat{\beta})^{\textstyle\zeta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat S\, (t | x_i, \hat \beta)^{\textup{\textsf{S}}}$
- 5. Analyze the new dataset with imputed event times

- 1. Evaluate the survival function $S(t)^{\delta}$
- 2. For a participant i censored at time c_i , let $p_i = \widehat{S}\,(c_i|x_i,\hat{\beta})^{\textstyle\zeta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat S\, (t | x_i, \hat \beta)^{\textup{\textsf{S}}}$
- 5. Analyze the new dataset with imputed event times
- Repeat m times
- Pool results by using Rubin's rules (multiple imputation)

Donald B. Rubin [1987]

Studied methods

To perform TPA, different methods can be used to estimate $S(t)$. **The other steps of the algorithm remain the same.**

We investigated 2 methods to estimate $S(t)$:

- Non-parametric **Kaplan-Meier** multiple imputation (KMMI)
	- ➢ Allows to stratify on any factor assumed to be related to survival or censoring
- **Cox** proportional hazards multiple imputation (COXMI)
	- ➢ Allows to stratify the imputation method to be aligned with the usual model used for survival analysis (Cox model)

Result process

Scenario / Simulation

Simulate 2-arm trial dataset

For non-administratively censored patients, simulate their **event times:**

- by **penalizing** their hazard by **δ** and study for which value of δ ($δ$ _{theoretical}) the result switches to non-significant (Tipping Point).

Evaluation method

Apply TPA on the original (non-penalized) censored dataset and observe for **which** value of **δ** it **switches** to **non-significant** (δ _{imputation}).

Compare the **theorical** δ (δ _{theoretical}) and the δ **retrieved** by **imputation** (δ _{imputation}) using TPA.

Simulation setup

- ➢ **1000** datasets are simulated
- ➢ **Both** TPA methods (**COX**MI and **KM**MI) are applied

Observation

Results

Observation

Results

Interpretation

Based on our simulations:

- In average, TPA based on COXMI/KMMI is efficient for recovering the theoretical δ value of a clinical trial
- Choice of the method (COXMI / KMMI) should be motivated by their pros and cons
- The δ value might be driven by:
	- \triangleright sample size
	- \triangleright informative censoring rate
	- \triangleright informative censoring times distribution

Conclusion

- TPA can be used to test the **robustness** of results to deviations from the ignorable censoring assumption (CAR).
- It provides **clinically interpretable** results
- Range of methods allows to **match** a method with the analysis planned for a particular clinical trial
- Tipping Point value is driven by different parameters of a clinical trial

To go further

Explore other methods There Explore and compare Theory Produce a user guide

to test the ignorable censoring assumption

- Copy-reference,
- Jump-to-reference
- \bullet ...

TPA variants

- improving control arm $(\delta < 1)$,
- imputing only the experimental arm
- \bullet ...

with recommendations on the most appropriate method to use, depending on the studied case.

References

Ilya Lipkovich, Bohdana Ratitch & Michael O'Kelly. Sensitivity to censored-atrandom assumption in the analysis of time-to-event endpoints. *Pharmaceutical Statistics; 2016*

Donald B. Rubin. *Multiple Imputation for Nonresponse in Surveys.* John Wiley and Sons Inc. New York, 1987

Thank you for your attention

Questions ?

Rubin's rules

Estimate pooling

$$
\bar{\theta} = \frac{1}{m} \Biggl(\sum_{i=1}^m \theta_i \Biggr)
$$

Total variance pooling Total variance was medicide wald testing

$$
V_{Total} = V_W + V_B + \frac{V_B}{m}
$$

$$
V_W = \frac{1}{m} \sum_{i=1}^{m} SE_i^2
$$

$$
V_B = \frac{\sum_{i=1}^{m} (\theta_i - \overline{\theta})^2}{m - 1}
$$

$$
Wald_{Pooled} = \frac{(\overline{\theta}-\theta_0)^2}{V_{Total}}
$$

Pooled wald value follows a tdistribution, used to derive a p-value

 θ_0 Parameter value under the null hypothesis

Pooled parameter estimate $\bar{\theta}$

- Parameter estimated at the ith imputation θ_i
- Number of imputations \bm{m}

25

 V_{B} Between imputation variance

 V_{W} Within imputation variance

Controlled multiple imputation in time-to-event data using tipping point analysis

Simulation scenarios

n: sample size C_{na}: non-administrative censoring rate

26 Controlled multiple imputation in time-to-event data using tipping point analysis

Tipping point algorithm

