PSI 2024 Conference Career Young Session

June 19th, 2024

clement.daniel@servier.com

Controlled multiple imputation in time-to-event data using tipping point analysis

Daniel C., Rincourt S., Delaporte F. and Skanji D.

Overview

- I. Missing data in survival analysis
- II. Tipping Point Analysis (TPA)
- III. Simulation and results
- IV. Conclusion

Missing data in survival analysis

Context

3

Administrative censoring can be considered as ignorable and non-informative ➤ Informative censoring assumption (CAR).

Non-administrative censoring is more likely to be related to study treatment and to be considered as non-ignorable (informative censoring, CNAR).

Missing data in survival analysis

Methods for missing data: Tipping point analysis

Sensitivity analyses can be performed to evaluate the **robustness** of the endpoint results to deviations from the ignorable censoring assumption (CAR).

Tipping point analysis (TPA) is a sensitivity analysis that is increasingly requested by **health authorities**.

- > TPA is based on:
 - Survival model (e.g. Cox, Kaplan Meier) imputation,
 - Controlled multiple imputation.
- > TPA consists of:

Incrementally penalizing (by δ) the imputed event times in the experimental arm until the result between the 2 groups is **no longer** statistically significant (tipping point)

The Tipping Point - interpretation

Tipping Point is defined as the lowest δ value for which the result between the 2 arms is no longer statistically significant

- Example: A **Tipping Point** equal to **3** would mean that:
 - in order to switch our results to non-significant,
 - the **hazard** following discontinuation of informatively censored participants from the experimental arm would need to be **3 times larger** than the hazard of similar participants remaining in the study.

The **greater** the Tipping Point, the more **robust** the results are to **deviation** from the **ignorable censoring assumption** (CAR).

Stress-test the results under the non-ignorable censoring assumption (CNAR)

Study the accuracy of the Tipping Point Analysis methods

Identify the parameters of a clinical trial that drive the value of δ

Method: Tipping point analysis in survival analysis

For a participant i discontinued at time c_i ,

- let $h_1(t)$ be his hazard at any given time point t following discontinuation,
- let $h_2(t)$ be his hazard at the same time t if he/she had continued the study.

 $h_1(t) = \delta * h_2(t)$

- $\delta = 1$, same hazard following discontinuation as if he had remained in the study,
- $\delta > 1$, greater hazard following discontinuation than the one he would've had

δ penalty is only applied to:

- Informatively censored participants
- Participants from the **experimental** arm

1. Evaluate the survival function $S(t)^{\delta}$

- 2. For a participant *i* censored at time c_i , let $p_i = \hat{S} (c_i | x_i, \hat{\beta})^{\delta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat{S} (t | x_i, \hat{\beta})^{\delta}$
- 5. Analyze the new dataset with imputed event times

SERVIER,*

1. Evaluate the survival function $S(t)^{\delta}$

- 2. For a participant *i* censored at time c_i , let $p_i = \hat{S} (c_i | x_i, \hat{\beta})^{\delta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat{S}(t|x_i, \hat{\beta})^{\delta}$
- 5. Analyze the new dataset with imputed event times

SERVIER,*

- 1. Evaluate the survival function $S(t)^{\delta}$
- 2. For a participant *i* censored at time c_i , let $p_i = \widehat{S} (c_i | x_i, \hat{\beta})^{\delta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat{S} (t | x_i, \hat{\beta})^{\delta}$
- 5. Analyze the new dataset with imputed event times

SERVIER

- 1. Evaluate the survival function $S(t)^{\delta}$
- 2. For a participant *i* censored at time c_i , let $p_i = \hat{S} (c_i | x_i, \hat{\beta})^{\delta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat{S}(t|x_i, \hat{\beta})^{\delta}$
- 5. Analyze the new dataset with imputed event times

SERVIER.*

- 1. Evaluate the survival function $S(t)^{\delta}$
- 2. For a participant *i* censored at time c_i , let $p_i = \hat{S} (c_i | x_i, \hat{\beta})^{\delta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat{S} (t | x_i, \hat{\beta})^{\delta}$
- 5. Analyze the new dataset with imputed event times

SERVIER.*

- 1. Evaluate the survival function $S(t)^{\delta}$
- 2. For a participant *i* censored at time c_i , let $p_i = \hat{S} (c_i | x_i, \hat{\beta})^{\delta}$
- 3. Draw $u_i \sim U(0, p_i)$
- 4. Impute the event time t_i^* as the solution of $u_i = \widehat{S} (t | x_i, \hat{\beta})^{\delta}$
- 5. Analyze the new dataset with imputed event times

- Repeat m times
- Pool results by using Rubin's rules (multiple imputation)

Donald B. Rubin [1987]

Studied methods

To perform TPA, different methods can be used to estimate S(t). The other steps of the algorithm remain the same.

We investigated 2 methods to estimate S(t):

- Non-parametric Kaplan-Meier multiple imputation (KMMI)
 - > Allows to stratify on any factor assumed to be related to survival or censoring
- **Cox** proportional hazards multiple imputation (COXMI)
 - Allows to stratify the imputation method to be aligned with the usual model used for survival analysis (Cox model)

Result process

Scenario / Simulation

Simulate 2-arm trial dataset

For non-administratively censored patients, simulate their event times:

- by **penalizing** their hazard by δ and study for which value of δ ($\delta_{\text{theoretical}}$) the result switches to non-significant (Tipping Point).

Evaluation method

Apply TPA on the original (non-penalized) censored dataset and observe for **which** value of $\boldsymbol{\delta}$ it **switches** to **non-significant** ($\delta_{imputation}$).

Compare the theorical δ ($\delta_{theoretical}$) and the δ retrieved by imputation ($\delta_{imputation}$) using TPA.

Simulation setup

- 1000 datasets are simulated
- Both TPA methods (COXMI and KMMI) are applied

Observation

	Scenario								
	Sample size = 800 (1:1)								
HR	0.70	0.70	0.80	0.80	0.85	0.85			
C _{na}	5%	10%	5%	10%	5%	10%			
Estimated S_{theoretical}	5	4.06	5	1.65	1.20	1.10			
Estimated $\delta_{imputation}$ COX MI	5	4.38	5	2.18	1.37	1.12			
Estimated $\delta_{imputation}$ KMMI	5	4.52	5	2.28	1.39	1.12			
MSE (COXMI)	0.145	0.271	0.442	0.453	0.425	0.606			
MSE (KMMI)	0.381	0.366	0.549	0.550	0.487	0.731			

Results

Observation

Results

Interpretation

Based on our simulations:

- In average, TPA based on COXMI/KMMI is efficient for recovering the theoretical δ value of a clinical trial
- Choice of the method (COXMI / KMMI) should be motivated by their pros and cons
- The δ value might be driven by:
 - sample size
 - informative censoring rate
 - informative censoring times distribution

Conclusion

•

- TPA can be used to test the **robustness** of results to deviations from the ignorable censoring assumption (CAR).
- It provides clinically interpretable results
- Range of methods allows to **match** a method with the analysis planned for a particular clinical trial
- Tipping Point value is driven by different parameters of a clinical trial

SERVIER 2

To go further

Explore other methods

to test the ignorable censoring assumption

- Copy-reference,
- Jump-to-reference

• ...

Explore and compare TPA variants

- improving control arm $(\delta < 1)$,
- imputing only the experimental arm
- •

Produce a user guide

with recommendations on the most appropriate method to use, depending on the studied case.

References

Ilya Lipkovich, Bohdana Ratitch & Michael O'Kelly. Sensitivity to censored-atrandom assumption in the analysis of time-to-event endpoints. *Pharmaceutical Statistics; 2016*

Donald B. Rubin. *Multiple Imputation for Nonresponse in Surveys.* John Wiley and Sons Inc. New York, 1987

Thank you for your attention

Questions?

Rubin's rules

Estimate pooling

$$ar{ heta} = rac{1}{m} \left(\sum_{i=1}^m heta_i
ight)$$

Total variance pooling

$$egin{aligned} V_{Total} &= V_W + V_B + rac{V_B}{m} \ V_W &= rac{1}{m} \sum_{i=1}^m SE_i^2 \ V_B &= rac{\sum_{i=1}^m (heta_i - ar{ heta})^2}{m-1} \end{aligned}$$

Wald testing

$$Wald_{Pooled} = rac{(\overline{ heta} - heta_0)^2}{V_{Total}}$$

Pooled wald value follows a tdistribution, used to derive a p-value

Pooled parameter estimate $\bar{\theta}$

- Parameter estimated at the ith imputation θ_i
- Number of imputations m

 V_B Between imputation variance

V_W Within imputation variance

θ_0 Parameter value under the null hypothesis

Controlled multiple imputation in time-to-event data using tipping point analysis 25

SERVIER

Simulation scenarios

Scenario	n	HR	C _{na}	median _{exp}	median _{control}	Accrual period	Study duration
1	800 (1:1)	0.7	5%	14.3	10	12	12
2	800 (1:1)	0.7	10%	14.3	10	12	12
3	800 (1:1)	0.80	5%	12.5	10	36	36
4	800 (1:1)	0.80	10%	12.5	10	36	36
5	800 (1:1)	0.85	5%	11.8	10	48	48
6	800 (1:1)	0.85	10%	11.8	10	48	48

n: sample size C_{na}: non-administrative censoring rate

26 Controlled multiple imputation in time-to-event data using tipping point analysis

Tipping point algorithm

