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Introduction

Bayesian and Frequentist methods
▶ Two potential ways to do this is Bayesian Dynamic Borrowing (BDB)

[1, 6, 8] and Prognostic Score Methodology (PSM) [2, 9], but many
more available [8]

Increased acceptance by regulatory agencies
▶ BDB have been approved by the FDA in some settings where

recruitment is difficult and PSM recently went through the process of
an EMA qualified opinion [5]

Setting: Phase 2B with mostly sponsors risk
▶ One historical trial to borrow from
▶ We borrow only the control arm and have a continuous endpoint
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Robust Mixture Prior

Many different ways to do Bayesian dynamic borrowing, such as
power prior and hierarchical prior [8]. We will focus on Robust
Mixture prior (RMP)

▶ RMP borrows dynamically via a likelihood weighting. If there is a large
prior data conflict the informative prior wont influence the posterior as
much [1, 6]

▶ The borrowing can be expressed as Effective Sample Size (ESS) [4] and
can be seen as expected additional enrolled control patients

▶ However, BDB can potentially inflate the Type 1 Error and have a
lower power.

How to select W?
▶ We choose the weight such that the prior contribute by no more than

50% of the future control arm measured with ESS
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Prognostic Score Methodology

With relevant historical data one can build a prediction model of the
future control response [2, 9] which reduces the residual variance in
proportion to the R2 of the model (and protects the Type 1 Error!)

▶ This can then be written as an ANCOVA such as
E [Yk ] = α+ δTk + βtxk + γẑ (RCT )

▶ NOTE: For PSM to add value it need to improve the R2 above what
an ANCOVA would have

Many different models can be used
▶ To improve upon an ANCOVA it probably needs to be able to detect

potential non-linearity in the data
▶ We have opted for XGBoost as it performs well on tabular data [3]
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Dynamic Twins - A natural conclusion?

We can combine the two methods by borrowing the control effect
after adjusting with PSM. A similar approach have been suggested by
Vanderbeek et al [7]

▶ The adjusted control response is the intercept from a linear regression
where centered covariates have been included i.e. Y = α+ β(X − X̄)
and then E[Y ] = α

This potentially increases the power by reducing the residual variance
and by increasing the effective sample size [4]

▶ However, we can now have a misspecification of the prognostic model
and the future control response!
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Simulation Model
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Simulation set up

The historical control arm is seen as fixed and the future RCT is
simulated from y = δ ·T + fprog (x, b; W, w, µ) + ε

▶ Three different historical sample sizes, 50, 400 and 1000
▶ The future study has 400 patients and have a 1:1 randomization

Two different types of prior data conflict
▶ By varying µ between -1 and 1, we can create prior data conflict. We

call it Locational Conflict.
▶ W 2 is altered between 0 and 2. This is to alter the functional

relationship of the future data and is called Functional Conflict.
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Alternative Hypothesis
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Null Hypothesis
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Discussion & Conclusion

Both methods are vulnerable to data conflicts, although in different
ways.

▶ BDB can have higher type 1 error and lower power
▶ While the downside in PSM is limited as the cost is one degree of

freedom
▶ BDB can be done with only summary level data while PSM requires

individual level patient data

The methods work in different ways to arrive at the same goal -
higher power/reduced sample size

▶ NB: BDB borrows in absolute numbers while PSM borrows in
proportion to the future trial

When little data is available, PSM does not add much value while
BDB can still give meaningful gains.

One can combine the two methods, but is sensitivity to Locational
and Functional Conflict
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Simulation Model

The historical and future control arms are simulated from
y = fprog (x, b;w, µ) + ε where

fprog (x, b;w, µ) = µ+ w1 ·g1(x1) + w2 ·g2(x2)+
w3 ·g3(x3) + w4 ·g4(x4) + w5 ·g5(x5) + w6 ·g6(x6, b)

(1)

with ε ∼ N(0, σ), where σ2 = 4 and
∑6

j=1 w
2
j = 6. The historical data is

kept fixed and where the configuration W = 1, w = 1 and µ = 0 represents
exchangability of the historical and future data. The future RCT is
simulated from the following model:

y = δ ·T + fprog (x, b; W, w, µ1) + ε, (2)
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Learner Comparison

HC.N Method Prior Mean R2 Post Mean R2 Drift in R2

HC.N=1000 PSM(LR) 0.33 0.32 0.01
HC.N=1000 PSM(RF) 0.45 0.43 0.02
HC.N=1000 PSM(XG) 0.55 0.54 0.01

HC.N=400 PSM(LR) 0.33 0.31 0.02
HC.N=400 PSM(RF) 0.39 0.38 0.01
HC.N=400 PSM(XG) 0.50 0.49 0.01

HC.N=50 PSM(LR) 0.40 0.25 0.15
HC.N=50 PSM(RF) 0.15 0.18 -0.03
HC.N=50 PSM(XG) 0.26 0.13 0.12

Table: 5000 simulations of the mean R2 based on in sample predictions and out
of sample predictions for different learners and different amount of historical data.
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Functional Conflict
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