

Detriment Index based Ranking Technique for painkiller drugs in Noncommunicable Diseases (NCD's)

Samadhan Ghubade PSI Conference, Amsterdam 16-19 June 2024

Outline

- Non-Communicable diseases (NCD's)
- Opioid crisis
- Problem & Proposal
- Data
- Fitting exponential growth model
- Computations
- Results
- Conclusions
- Benefits
- Further research

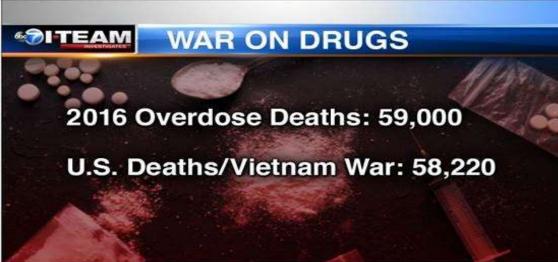
Non-Communicable diseases (NCD's)

Noncommunicable diseases - NCDs - cause

7 in every 10 deaths worldwide*

from often avoidable causes

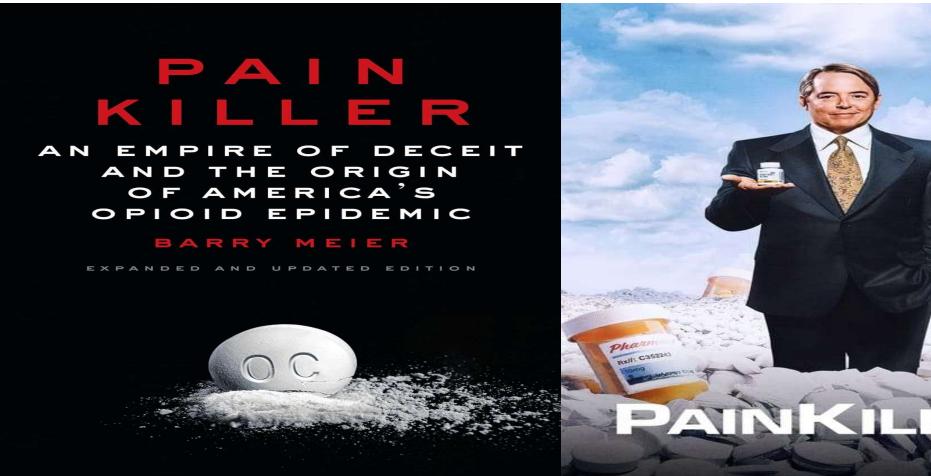
Opioid crisis



Opioid overdose deaths to 'grow exponentially' without action.

1.2M opioid overdose deaths forecasted in US and Canada.

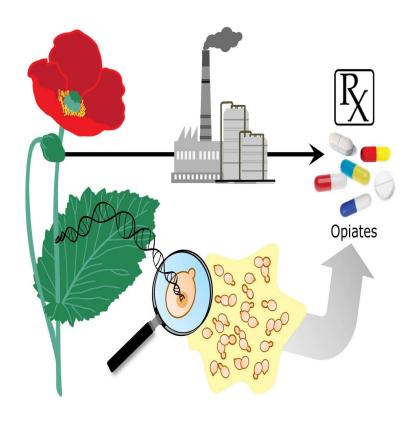
Opioid Crisis



Opioid crisis

4 US firms to pay \$26B for fueling opioid crisis

Is your pain big pharma's gain?



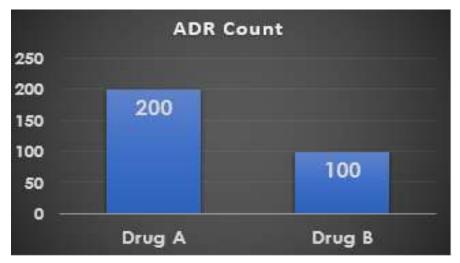
Oxycontin - Purdue pleaded guilty, paid \$600 million for misbranding

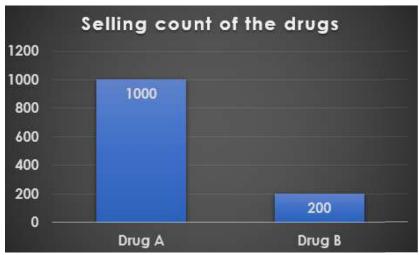
Opioids

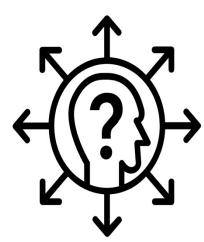
- Drugs can be made from the poppy plant
- Made in the lab
- Relieve pain

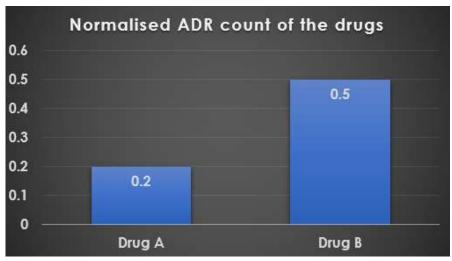
Problem and Proposal

- Problem
 - Not feasible to stop prescribing
 - Very useful as painkillers but highly addictive
 - Which opioids are less dangerous?
 - Can we rank opioids in terms of safety?
 - Choose the best drug based on their safety reports or ADR
- Proposal
 - Use voluntary adverse drug reaction (ADR) counts
 - Lower the count safer the drug




Data





Problem with the proposal

- Unique choice is not possible
- Solution: Take cumulative count & fit exponential growth model

Exponential growth model

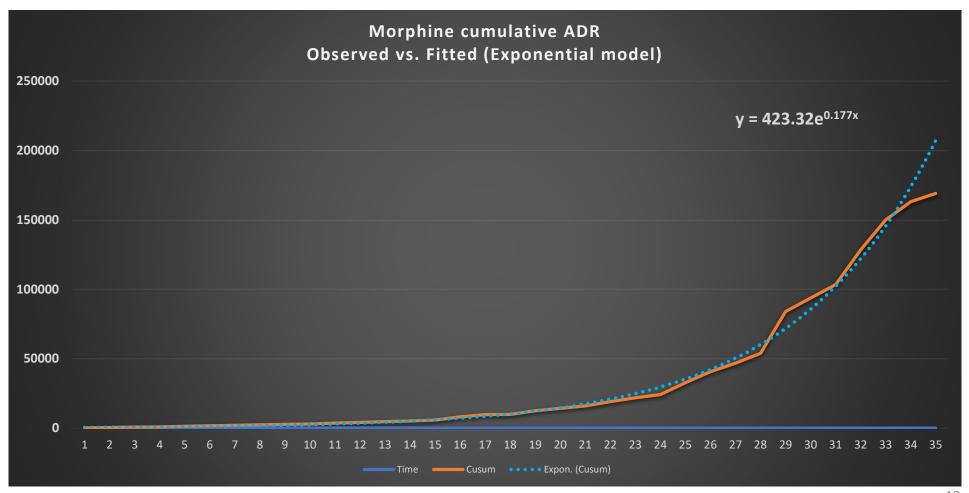
Equation

$$Y_t = \alpha * exp (\beta t)$$

- Where slope (β)= detriment index (growth rate) decides shape, t = time
- Higher value of β , faster the explosion of ADR count, lower value of β slow rise, β =0 flat graph
- Higher the value of β, worse the drug
- Exponential model has been fitted well and it has a special property

Exponential growth model

- Satisfy is independence of total exposure/total use/total sale etc.
- If model depends on total exposure, total use it's a failure
- Growth rate parameter shouldn't correlate with usage volume
- Large use drug can become more unsafe
- Attempt other models, but due to this difficulty hence used exponential


Exponential growth model

- Linear, Cubic or quadratic or non-linear models etc. can't be used
- •Linear model slope (β) that changes with total exposure (2y=2a+2 β)
- Useful if all drugs in question follow the same pattern
- Forecast future trends in opioid-related adverse events

Difficulty

- Question: Does depend on popularity or volume of use?
- Answer: No $Y_t = \alpha * exp(\beta t)$
- Multiply both $2Y_t = 2\alpha * exp(\beta t)$
- Growth rate slope (β) is unaffected by volume of drug use
- \bullet If all y values double, then value of intercept (a) doubles but value of β remains unchanged
- We call 'β' the **Detriment Index** of the drug

Question: Does exponential model fit well?

Results based on growth rate (all ADR)

Ranking based on growth rate				
#	Drug Name	Rank		
1	DEMEROL- Pethidine	0.1236	1	
2	AMITRIPTYLINE	0.1253	2	
3	CODEINE	0.1659	3	
4	MORPHINE	0.177	4	
5	FENTANYL	0.2101	5	
6	PERCOCET	0.2143	6	
7	TRAMADOL	0.2252	7	
8	METHADONE	0.2284	8	
9	VICODIN	0.2337	9	
10	HYDROMORPHONE	0.2372	10	
11	HYDROCODONE	0.2913	11	
12	OXYCONTIN	0.3096	12	

Objection on choice of data

- 1. Objection on use of all ADR count together
- 2. Highest concern is with opioid deaths

- 3. Combining counts of deaths with all other ADR such as minor overdose reactions Not acceptable
- 4. Solution?
- 5. Use the counts of deaths only. Exclude other ADR.
- 6. Data?

Results based on growth rate (Death)

Ranking based on growth rate (ADR to Death Count)

#	Drug Name	Detriment Index (β)	Rank
1	DEMEROL-Pethidine	0.1755	1
2	VICODIN	0.1789	2
3	MORPHINE	0.2025	3
4	PERCOCET	0.2073	4
5	AMITRIPTYLINE	0.2096	5
6	CODEINE	0.2183	6
7	OXYCONTIN	0.2303	7
8	HYDROCODONE	0.2304	8
9	METHADONE	0.2341	9
10	FENTANYL	0.2583	10
11	TRAMADOL	0.2736	11
12	HYDROMORPHONE	0.2857	12

Change in ranking (ADR to death count)

#	Drug Name	ADR Rank	Death Rank	Diff
1	DEMEROL- Pethidine	1	1	0
2	AMITRIPTYLINE	2	5	-3
3	CODEINE	3	6	-3
4	MORPHINE	4	3	1
5	FENTANYL	5	10	-5
6	PERCOCET	6	4	2
7	TRAMADOL	7	11	-4
8	METHADONE	8	9	-1
9	VICODIN	9	2	7
10	HYDROMORPHONE	10	12	-2
11	HYDROCODONE	11	8	3
12	OXYCONTIN	12	7	5

Another Problem

- Excluding life threatening ADR?
- Not reasonable

- · Solution?
- Combine count of deaths with life threatening events

Results based on growth rate (LT + Death)

Ranking based on growth rate (ADR to LT and Death Count)

#	Drug Name	Detriment Index (β)	Rank
1	DEMEROL- Pethidine	0.0681	1
2	CODEINE	0.0938	2
3	MORPHINE	0.101	3
4	AMITRIPTYLINE	0.1313	4
5	FENTANYL	0.1521	5
6	VICODIN	0.187	6
7	PERCOCET	0.1945	7
8	HYDROMORPHONE	0.1954	8
9	HYDROCODONE	0.2366	9
10	OXYCONTIN	0.2585	10
11	METHADONE	0.3059	11
12	TRAMADOL	0.3441	12

Change in ranking (ADR to LT + death count)

#	Drug Name	Rand (Death)	Rank (LT + Death)	Diff
1	DEMEROL- Pethidine	1	1	0
2	AMITRIPTYLINE	2	6	-4
3	CODEINE	3	3	0
4	MORPHINE	4	7	-3
5	FENTANYL	5	4	1
6	PERCOCET	6	2	4
7	TRAMADOL	7	10	-3
8	METHADONE	8	9	-1
9	VICODIN	9	11	-2
10	HYDROMORPHONE	10	6	4
11	HYDROCODONE	11	12	-1
12	OXYCONTIN	12	8	4

Results based on growth rate (all ADR)

Ranking based on growth cancer drugs				
#	Drug Name	Rank		
1	Tamoxifen	0.0972	1	
2	Avastin	0.1211	2	
3	Bleomycin	0.139	3	
4	Paclitaxel	0.1673	4	
5	Vincristine	0.1706	5	
6	Methotrexate	0.1853	6	
7	Cisplatin	0.1859	7	
8	Doxorubicin	0.208	8	
9	Docetaxel	0.267	9	
10	Rituxima	0.2771	10	
11	Trastuzumab	0.3025	11	
12	Revlimid	0.5431	12	
13	Lenalidomide	0.5432	13	
14	Pembrolizumab	0.8277	14 26	

Results based on growth rate (ADR to LT + Deaths)

Ranking based on growth cancer drugs				
#	Drug Name Detriment Index (β)			
1	Bleomycin	0.1412	1	
2	Methotrexate	0.1436	2	
3	Cisplatin	0.1833	3	
4	Paclitaxel	0.1844	4	
5	Doxorubicin	0.2187	5	
6	Tamoxifen	0.2391	6	
7	Revlimid	0.2391	7	
8	Rituxima	0.2455	8	
9	Trastuzumab	0.2459	9	
10	Docetaxel	0.2478	10	
11	Avastin	0.3288	11	
12	Lenalidomide	0.4581	12	
13	Vincristine	0.607	13	
14	Pembrolizumab	0.6851	14	

Change in ranking (ADR to LT + death count)

#	Drug Name	Rank (ADR)	Rank (LT + Death)	Diff
1	Tamoxifen	Î	6	-5
2	Avastin	2	11	-9
3	Bleomycin	3	1	2
4	Paclitaxel	4	4	0
5	Vincristine	5	13	-8
6	Methotrexate	6	2	4
7	Cisplatin	7	3	4
8	Doxorubicin	8	5	3
9	Docetaxel	9	10	-1
10	Rituxima	10	8	2
11	Trastuzumab	11	9	2
12	Revlimid	12	7	5
13	Lenalidomide	13	12	1
14	Pembrolizumab	14	14	0

CONCLUSION

 Rank opioid or painkillers drugs by fitting exponential models to deaths

- Ranking remains consistent when including life-threatening events with deaths
- The method used does not depend upon popularity or total exposure of an opioid

Benefits

 Rank drugs for safer cancer treatment, reducing side effects

Prioritize low-risk drugs to lower treatment burden

 Optimize resource allocation in healthcare systems

 Collaborate using Detriment Index to fight against opioid crisis

 Innovative approach contributes to the safe and effective management of pain in patients, ultimately improving their quality of life and well-being

Further research

Beyond the Basics:
Statistical Innovations for
Deeper Understanding of
Opioid Addiction and
trends

Further research

- Identify socioeconomic backgrounds linked to higher addiction rates
- Explore machine learning for predicting high-risk opioid misuse
- Explore trends in opioid prescribing, hospital admissions & overdose deaths over time
- Time-series forecasting models to predict future opioid-related trends
- Branching process models provide a stochastic framework for ranking drug safety

References

- https://www.vigiaccess.org/
- https://fis.fda.gov/sense/app/95239e26-e0be-42d9-a960-9a5f7f1c25ee/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis
- https://drugabusestatistics.org/drug-overdose-deaths/
- https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-event-reporting-system-faers-public-dashboard
- "Pain Management in Patients with Cancer" by Eduardo D. Bruera et al.
- https://www.cdc.gov/overdose-prevention/data-research/factsstats/sudors-dashboard-fatal-overdose-data.html

ACKNOWLEDGMENTS

- I would like extend my gratitude to all reviewers and colleagues for their support.
 - Thanks to Pushkar Joshi for helping me while working on this paper.

Thank you for your time!

Any Questions?

iconplc.com

