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2-arm RCT with a single stage design

Experi mental 0000000000000000000000000000000000000000000
Control 0000000000000000000000000000000000000000000

« Test of primary endpoint

« Traditionally frequentist test

« |Is there a point of using Bayesian analysis if one would use non-informative priors?
« Testing of primary and secondary endpoints

« Multiplicity addressed by closed testing procedures (e.g., hierarchical test)
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2-arm RCT with an interim analysis

YU ER I 0000000000000000000000000000000000000000000
Control 0000000000000000000000000000000000000000000

Interim

Still many will select frequentist approaches Analysis

« Early stopping (efficicay / futility): group sequential designs (Pocock 77, OBF 79,
Jennison & Turnbull 00, ...)

« Testing of primary and secondary endpoints
« Already more tricky, e.g., cannot simply perform a hierarchical test

« Inflation of type 1 error if secondary endpoint is tested at full level alpha after primary
reached statistical significance (e.g, Hung et al. 2007, Glimm et al. 2010)
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2-arm RCT with an interim analysis

YU ER I 0000000000000000000000000000000000000000000
Control 0000000000000000000000000000000000000000000

Interim Analysis

. with Adaptations
« Sample size reassessment

« Blinded (e.g, see papers by Friede et al.)

« Unblinded: Adaptive frequentist tests (e.g., Bauer et al, 2018)
« Adaptive combination test (Bauer 89, Bauer & Kéhne 99)
« Conditional Error (Miller & Schafer 99)

« What about change of allocation ratio?

« If changed once in a single interim analysis, type | error can be controlled by adaptive tests
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2-arm RCT with response adaptive randomisation

Experi mental 0000000000000000000000000000000000000000000
Control 0000000000000000000000000000000000000000000

« Response Adaptive Randomisation (RAR)
« Tricky to control type 1 error with frequentist methods

« Strict control possible using CE principle conditioning on an artificial design (which actually will
never apply)

« Usually evaluation & calibration of type 1 error rate with simulations

« Use of Bayesian methods seems more reasonable to comply with very adaptive nature of RAR
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Trial Designs with pre-defined subgroups

* Suppose two biomarker-defined, disjoint subgroups Experimenl © © € © © © © © 0 © © ©

have been identified before starting the trial Subgroup 1 Cortrol M B e A R

Experimentak @® ® ® ®© ® @ @ ¢ & & © O

* Test of the null hypotheses in each subgroup Subgroup 2
Contol 4+ + + + + + + + + + + +

Hop : 01 <0and Hoz : 62 < 0.

* Isthere a need to adjust for multiplicity?
* Because two hypotheses are tested, without adjustment the familywise error rate (FWER) will be inflated.
* Therefore, typically a multiplicity adjustment is required
* For umbrella (or basket trials), it has been argued that in certain settings no FWER is necessary

* Collignon, Olivier, et al. (2020). "Current statistical considerations and regulatory perspectives on the planning of conrmatory
basket, umbrella, and platform trials." Clinical Pharmacology & Therapeutics 107.5: 1059-1067.

* Collignon, 0., Posch, M., & Schiel, A. (2022). Assessment of tumour-agnostic therapies in basket trials. The Lancet Oncology,
23(1), e8

*  What are optimal designs? Single stage or adaptive trials?
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Optimising trial designs under uncertainty s

Optimizing subgroup selection in two-stage adaptive
enrichment and umbrella designs

Statistics ) py

« Use Bayesian techniques
« Define a gain function as a measure of overall trial performance, e.g.,
L{(Qé) = )\]].[HFj(”(’TfHOl] + (l — )\)ﬂ[}?(’jf’.(‘fHog}

« But one needs to define prior uncertainty on the effect sizes how to design the trial

91 \r ll 1 l*‘f pl‘l '15’3’2

~ |V . 3 ‘ .

02 2 PY1Y2 lf

« Maximise the Bayes expected gain over important design parameters a

argmax, / / £(0]6,a)4 (6, X)dOr(6)d6
Jo .Je
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Use Decision Theoretic Approaches for Design Optimization

« Trial designs, sample sizes, adaptation rules and
multiple testing procedures can be chosen optimal

Single Stage Trial
- 2 with respect to a utility function.

Experimentahk, @ ® @ ® @ @ @ ®© ® ® & ©

Subgroup 1
il FEETEFT TR L FRE « Optimal trials depend on prior assumptions on the
sppe e B B AR R e effect sizes and subgroup prevalence.
Contol + 4+ 4+ 4+ + + + + + + + +
Adaptive Subgroup Selection Trial « More complex utility functions can be considered,
First Stage Second Stage accounting for costs, observed effect sizes, precision
Experimental ® ® ® @® ® @ ® @ ® ¢ © ¢ 0 & 0 & 0 0 .
sigopt T Y Y bt rli trtt 4+ + 4+ 4+ ofestimates, the true treatment effects etc.
B > Experimental ® ® ® ® ® @
R Contol 4+ 4+ 4+ + + +
Interim Analysis
Adaptive Bayes Optimal Enrichment Trial « To control FWER use adaptive closed tests
ol @ .F"itsfge. il & .Se.con:Sta.ge. - « Koenig, F., Brannath, W., Bretz, F., & Posch, M. (2008). Adaptive
Xperimenta
Subgroup 1 Conol + 4+ ++++l+++++++++ Dunnett tests for treatment selection. Statistics in Medicine, 27(10),
Subaroup 2 Experimental ® ¢ ¢ & & O ® & ¢ 1612-1625.
e Controdl & 4+ 4+ + + + | + + +

« Bauer, Peter, et al. "Twenty-five years of confirrmatory adaptive
designs: opportunities and pitfalls." Statistics in Medicine 35.3
(2016): 325-347

Interim Analysis
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What about having many baskets?

« Natural to borrow strength from ,similar* . | Eoumed e e eeeeee e
baskets HPIrop Contol 4 + 4+ + + + + + + + + +
Subgroup 2 Experimental @ ® © © ® © © © @ ® © ©

« More natural to use Bayesian approaches Cool + 4+ 4+ + + 4+ + ++ + + +
. Sub 3 Experimentak @® ® ® ® ® ®© ®© @ ¢ ® © ©

« Control of type 1 error less criticial, as ubgroup Gl 3 Rl o S
basket trials are mainly in exploratory Subgroup 4 ¥ € 0 000000000
Comol 4+ + 4+ + + + + + + + + +

phase Il setting. (e.g, see Review by Meyer
et al 2020)

Experimental @® ® ® ®© @ @ @ ® ¢ ® ¢ ©
Contrdl 4+ + 4+ + + + + + + + + +
Experimentak @ ® @ ®© ® @ ¢ ® @ & @ ©
Contdl 4 4+ + + + + + + + + + +

Subgroup |

Subgroup k
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Trial Design (Adaptive/Basket/Umbrella/Platform/...)

« Bayesian decision theoretic methods to optimize trial designs
« Sample sizes
« Allocation ratios
« Endpoints and testing procedures
« Number of treatment arms
« Stopping rules

« Adaptation rules
« The Bayesian approach is used only to optimize the design of the study.

« The analysis of the trial can still be frequentist (e.g., for pivotal trials) or Bayesian
(e.g., Phase llb in Basket trials).

« Too complex trials may require simulation to evaluate the operating characteristics.
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Separate trials, multi-arm trial and platform trials

Separate trials

Arm 3
Control |
Time
Arm 2
Control
Time
Am1 | |
Control { ]
Time

No adjustment
accross studies

MEDICAL UNIVERSITY
OF VIENNA

Multi-arm trial Platform trial

+ Multi-arm multi-stage trials that allow new
experimental treatment arms to enter and leave the
trial at different times

e Treatments to be studied no defined upfront

Arm 4 Arm 4
Arm 3 Arm 3
Arm 2 Arm 2
Am1 | | Am1 |
Control J | Control [ |
Tim; Time'
?27?
. . Some debate whether adjustment necessary
Traditionally adjustment [Stallard et al. 2019, Collignon et al. 2020a, 2020b, Park & Weir (2020),
e.g., Dunnett-test Bretz & Konig (2020), Nguyen et al (2022), Koenig et al (2024) ..]

And if you want to adjust, for how many?
[Online methods, Robertson et, Zehetmayer, ...]




Platform Trials

Control arm that potentially runs perpetually. Control data sharing among treatment arms,
either using always all control data, onlly concurrent control data, dynamic borrowing, .

L
r )
Design Characteristics of Platform Areament 1
Trial Control 1 0060000000866 0 e DG i e
rials / control
e Multi-armed trials .Treatmentr‘Dose 10'00 00 g g g g g g § g g g 00O .O.O Contol2 O QO O |
_ _ 000 |00
« Interim analyses & adaptations _ ; £ g 3
B : _ _ . oz Corresponds
. : : 3 Flexible Interim Analyses that allow e.g. early termination or Ly
Treatments to be StUdlEd not d€f|n€d E enrichment. Could be based on surrogate short-term endpoint. tﬁiﬁgo:iti‘;?
upfront but may enter during the 2 can change
course of the trial £ (FEmEBesk OGO IOICO OICOIONO ORCHC OO ©) WERe
S
F e
e Control arm(s) can be shared « r = '
a TreatmenUDoseK+'IOO08828888 gOOOOOOO
« Control arm(s) may change over time -
Staggered =T
« Populations for the different treatments 5 M Treatment/Dose K+2 O O O O O O § § g § § § § § g
may not be the same (Umbrella type over Time : |
trIaIS) Treatment/Dose K+3 010 0000000
a) L 000000000

« Designed as trial with a Master Protocol

with several sub-studies
=

Time
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FWER when ignoring multiplicity & adaptations

What can go wrong: Comparing of k treatments with a control

Maximum type 1 error inflation:
What is the most

extreme T1E rate: k=1 k=1 k=2
nominal « | balanced! | unbalanced? | unbalanced?

« If only a single interim analysis

is conducted 0.05 0.115 0.187 0.289
. \ 0.025 0.062 0.106 0.170
* AndIf SSR* conducted. 0.01 0.027 0.049 0.080
* In addition also adapt
1 PROSCHAN AND HUNSBERGER 1995
allocation ratio (unbalanced) ol ChAr AND BAvER 2011

3 GRAF, BAUER AND KOENIG 2014

« But analysis not corrected

SSR*= Adaptive sample size re-estimation on unblinded data
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PLOS ONE https://doi.ora/10.1371/iournal.pone.0281674

@ OPEN ACCESS E PEER-REVIEWED

RESEARCH ARTICLE

Designing an exploratory phase 2b platform trial in NASH
with correlated, co-primary binary endpoints

Elias Laurin Meyer, Peter Mesenbrink, Nicholas A. Di Prospero, Juan M. Pericas, Ekkehard Glimm, Vlad Ratziu, Elena Sena,
Franz Kénig [E]. on behalf of the EU-PEARL NASH Investigators

« Platform design with parallel cohorts each
consisting of control and active therapy and
option to share control data

« Amount of concurrent control data depends
on open cohorts

* Interested in two primary endpoints (NASH
resolution and fibrosis improvement)

* Interim analysis (based on surrogate
endpoints) for efficacy & futility

« Superiority not sufficient, interested in
different level of evidence

MEDICAL UNIVERSITY
OF VIENNA

Platform Design

Regimen 1
Cohort 1 s ey
SoC ,Regimen
: could be e.g.
Regimen 2
Cohort 2 monotherapy,
SoC combination
R@gggnem 3 therapy,
Cohort 3 SoC
Regimen 4

Cohort 4

SoC

Regimen 5
SoC

Cohort 5

Time

For more information see
presentation by Elias Meyer on
Wednesday




Control better . Treatment better

' Level 1: We need very high confidence (e.g., y, = 0.95) that treatment is
. better than control, regardless of magnitude of effect (3, = 0)

Level 2: We need high confidence (e.g., v, = 0.85) that
treatment is better than control by a certain margin
(here 8, = 30 percentage points)

Level 3: Need some evidence (e.g., y; = 0.60) that
large differences (here &, = 40 percentage points)
between treatment and control are plausible

Futilty: Stop the trial early, if there is very little
confidence that the treatment is better by some
margin than the control (here 25 percentage points) :
| | | i

Lo | | | I | >

-60 -30 0 30 60

Difference in response rates between Treatment — Control

« Using a closed test and adaptive combination test would become more and more burdensome.
« As exploratory study control of FWER considered not as critical

« Use of Bayesian multi-level decision rules to deal with two endpoints, interim analyses, etc

« Assessment of operating characteristics via simulations

« Early discussion with both EMA and FDA (e.g, see Gidh-Jain et al 2024; Nguyen et al. 2024)

MEDICAL UNIVERSITY
OF VIENNA




Enriching the analysis with further data?
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Historical data . Non-concurrent data Concurrent data Time

Entry time for Arm 4
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Bl Roig eral Tidks (20231 24408 Trials
hetos//doiorg/10.1186/512063-023-07398-7

On the use of non-concurrent controls
in platform trials: a scoping review

Roig""®, Cora Burgwinkel'?, Ursula Garczarek?, Franz Koenig!, Martin Posch

Abstract

Background F




Enrich

A : :
> ] ]
§ | :
§ [ : : |

w 2 .
. |
Am3 - |
£ [ : ] |
3 Am 2 : 3
2 arm 1 ' ' |
k] I 1 = |
£ . |
| I ] |

Historical data . Non-concurrent data Concurrent data Time
Entry time for Arm 4

Fig. 1 Definition of controls depending on the soutce and time. The data within the red box represents the (internal) data from a platform trial,
the data outside the red box represents the external data. Non-concurrent control data for arm 4 is represented in light grey boxes and concurrent

controls are represented in dark grey

Circumstances in which the use of external/historical/non-

concurrent control is recommended or deemed acceptable

Rare disease/event-
Indication specific

Other

Large treatment effect

Ethical concerns regarding
assignment to placebo/control
Unmet medical need

Predictable disease course/
Natural history well defined

High mortality

Pediatric

No time frend in disease
population/management

Obijective endpoint
Predictable mortality
Homogenous treatment effect
Feasibility of randomized trial

Drug effect self-evident
Long treatment period before
endpoint can be measured

o

-

n

4 5 6 7
Number of published documents

8

ing the analysis with further data?

Bofil Roig etal Tricks

Sodird Trials
https/idol.ara/10.1186/513063-023-07398-1

®
On the use of non-concurrent controls i

in platform trials: a scoping review

Marta Bofill Roig'®, Cora Burgwinkel'?, Ursula Garczarek?, Franz Koenig!, Martin Posch’, Quynh Nguyen? and
Katharina Hees”

Abstract

Flatform trials gained the last few years as they In compared to mult-
‘e trials by allowing new experimental arms entering when the trial already started. Using a shared control groups
in platform tri the i mpaied 10 separaie triais. Because of the later entry of some of the
experimental treatment arms, the shared control group ncludes concurrent and non-concurrent control data. Fora
given non-concurment control: t tients allocated m before tt nters
the trial, while concurrent Controls refer to control patients that urently am
Using non-concurrent controls can result in bias in in case of the approps thodolog
Is not used and the assumptions are not met.
Methods We conducted two reviews on the use of non-concusrent controls i platform trials: one on statistical

g g o arche extemal and hi
control data. We conducted our review an the statistical methodology in 43 articles identified thiough a systematic
search n P i guidance on the use of non-concurrent controls in 37

quidelines published on the EMA and FDA websites.

Results Only 7/43 of the methodological articles and 4/37 guidalines focused on platform trials. With respect to
the statistical methodology, In 28/43 articles, a Bayesian approach was used 10 Incorporate extemal/non-concurrent
controls while 7/43 used 3 fraquentist approach and 8443 considared both, The majority of the articies considered a
method that downweights the non-concurrent control in favour of concurmant control ata (34743}, using for Instance
mesa-analytic of propensity score approaches, and 11/43 cansidered a modelling-based approach, using regression
models o J | data guidelines, the use of control data
was considared critical but was deemed acceptable for rare diseases in 12/37 quidelines or was accaptad in specific
indications (12/37). Non-comparablity (30/37) and bias (16/37) were ralsed most often a5 the general concems with
non-cancurrent controfs. Indication specific guidelines were found to be most instructive.

Conclusions Statistical methods for Incorporating nan-concurrent controls are available In the Iterature, either

by means of methods originally proposéd for tha ICorporation of extermal Contiois of non-Concurrent contrals in
piatform: trials. Methods malnly differ with respact to how the concurrent and non-concurrent data are combined

Concerns raised with the use of historical/external/non-
concurrent controls

Comparabiity ‘—

Indication specific concern or requirement —
Selection bias _
Differences in measurements _
Data/Trial integrity _
High quality of data _
Change in SOC -

Source
M EVA

M ICH

0

1

2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3
Number of published documents



External data

Enriching the analysis with further data

A

Internal data

Arm 2

{ Am1

Historical data . Non-concurrent data . Concurrent data Time
Entry time for Arm 4

Methods to incorporate external / non-concurrent controls

Trials

On the use of non-concurrent controls
in platform trials: a scoping review

I| Roig'"®, Cora Burgwinkel'Z, Ursula Garczarek?, Frar

Mart

Results

« Test-then-pool approaches; Frequentist and Bayesian regression model approaches; Propensity score approaches and
baseline covariates-adjustments; Power prior and commensurate power prior; Hierarchical models; Elastic prior

Not clear how to incorporate external data with frequentist method if strict control of type 1 error rate required

« Some will depend on certain assumptions
Even more lost with interim analyses

More natural place for using Bayesian methods
« However, no strict control of type 1 error rate (Kopp-Schneider et al. 2018)
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What about using only data from the platform

“Treatment-control comparisons in platform trials

: including non-concurrent controls”. (2024). M. Bofill
tam . Roig, P. Krotka, K. Hess, F. Koenig, D. Magirr, P. Jacko,

— T. Parke, and M. Posch.

External data

Internal data

: ' “On model-based time trend adjustments in platform
Historcal data T r— | cepkde T trials with non-concurrent controls”. (2022). M. Bofill

P 1 Dt of o cepening oo S0 T T BT e o e e e T ST Roig, P. Krotka, CF. Burman, E. Glimm, K. Hess, P.

- Jacko, F. Koenig, D. Magirr, P. Mesenbrink, K. Viele,

and M. Posch. BMC Medical Research Methodology

https://doi.org/10.1186/s12874-022-01683-w
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. Bofill Roig et al. 2024
Inference in model based approaches

Under which assumptions do the models lead to gain in power and type I error

control?
Simulation settings: . o
o 1:1:. 1 allocation ration and - Some analysis methods to incorporate NCC
block randomization Arm 1 ] S h: Analvsi . |
e Three experimental arms with Shaliiai , eparate approach: Analysis using only
equal n = 250 concurrent controls.
e New arm enters every d S - Time ] )
recruited patients d d « Pooled approach: Analysis pooling concurrent
e Time buckets of size 25 e and non-concurrent controls
e Calibration of 7 assuming small, %
moderate or large jumps % « Model-based approaches‘
e Stepwise time trends - . . 2
- _ « Frequentist regression method
e Equal and different time trends 3
— « Bayesian Time Machine3

500 50
Patient recruitment

A: strength of the time trend

Results for Arm 3 vs Control

MEDICALUNIVERSITY 2Z:‘.- .|: R h‘\u 1 ‘.“.-‘ “.”,‘w;‘,‘.‘ ”uu ; 1 ‘,'_‘: \. trend adjustment n plat m
OF VIENNA “3 \ “”-‘V 1“._"”‘._“ \u“‘ '\ “ I'ime C-.w I\‘Iu-uv.w‘!.._l..‘.: w mporal drift in multi-arm



Type 1 error in platform trials with equal time trends across arms
Bofill Roig et al. 2024

e No treatment effect on arm 3 (Hp)

e Same time trend for treatment and control arms ()

Stepwise time trend Stepwise time trend

0.100 1 [ 0.100 1

0.075 i 0.075-
) : . A2
u Fialysis approgche o Assumed time drifts:
5] -+~ Pooled approach 'é . B
o 0.0504 -+ Regression model o 0.0504 4
@ | 9 g -+~ moderate
Ty [ -+ Separate approach o
(0] )
= Time machine o o= i | A
= | =

0‘025'"'l.'-_u‘"""“'y"""'" 0.025 1

Lt
0.000 1 0.000 4
0 125 250 375 500 -015 -01 -005 0 005 01 015
d A

Frequentist model controls the type | error (T1E) under the assumption of equal time trends. In addition the
T1E control of the Time Machine depends on the assumptions on the prior for the time drift
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Power in platform trials with equal time trends across arms

e Effect on treatment arm 3 (H1)

e Same time trend for treatment and control arms (\)

Stepwise time trend
1 0 -— e —
5=
/
i
//
0.9 /
’ /,/ Analysis approach:
5 / -e~ Pooled approach
g ,/ -+ Regression model
= i -=— Separate approach
L Time machine
0.84
0.7 1
0 125 250 375 500

) Bofill Roig et al. 2024

Frequentist and Bayesian model-based approaches improve the power as compared to separate analysis
using only CC. (The time machine would behave similar to regression model if more conservative prior
would have been chosen).




Conclusions

« The combination of Bayesian techniques and adaptive (frequentist) tests should be
way forward to optimize trial designs

« For more complex adaptations (with higher frequency and flexible timing) difficult to
implement under frequentist adaptive closed testing framework

« However, insisting on strict control of FWER may prevent the use of alternative
methods

« Or require reliance (and acceptance) on simulating important operating characteristics
« It is not Bayesian vs Frequentist, the assumptions an analysis is based matters!

« However, if single arm trials are conducted in certain situations, this should also
facilitate the use of Bayesian methods incorporating both adaptations, evidence from
2-arm RCT and non-concurrent control (or external) data.
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STATISTICS IN MEDICINE

Staiist. Med. 2009; 28:1321-1338
Published online 26 February 2009 in \'vlle) InterScience
(www.interscience.wiley.com) DOIL:

Optimal choice of the number of treatments to be included in a
clinical trial

Nigel Stallard'-* T, Martin Posch®# ¥, Tim Friede!, Franz Kwenig2
and Werner Brannath?

"Warwick Medical School. University of Warwick, Covenrry CV4 7AL. U.K.
2Section of Medical Statistics. Core Unit for Mecfu al Statistics and Informatics, Medical University of Vien
Spitaigasse 23, A-1090 Wien, Austria

SUMMARY

It is common for a number of potentially effective treatments to be available for clinical evalua
Limitations on resources mean that this inevitably leads to a decision as to how many, and wl
treatments should be considered for inclusion in a clin . This paper considers the probler
ion of possible treatments for inclusion in a phase III clin trial. We assume that treatments wi
compared using a standard frequentist hypothesis test, and propose a Bayesian decision-theoretic appr
that leads to minimization of the total sample size of the trial subject to controlling the fam i
error rate and the e\pule:l probability of cting at least one null |1\|ml|lt‘\i\ The methoc
in the simplest situation, in which two experimental treatments could be included in the clinical |
explo the levels of evidence that are required to lead to an optimal trial that includes one or bot
these treatments. Copyright © 2009 John Wiley & Sons. Lid.

KEY WORDS: assurance: clinical trial design: decision theory: multiple hypothesis testing

Assurance

oC
E{Pr(reject Hp|0)}= Pr(reject Ho|0)m(0)do

—00

Bayesian Conditional Power
o Pr(reject Ho | 0)m(0)d0
fo m(0)do

E{Pr(reject Hy|0)|0>0}=
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Adaptive designs for subpopulation analysis optimizing utility
functions

Alexandra C. Graf'2, Martin Posch*', and Franz Koenig'

! Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna,
Spitalgasse 23, 1090 Vienna, Austria

? Competence Center for Clinical Trials, University of Bremen, Linzer Strasse 4, 28359 Bremen,
‘Germany

Received 1 November 2013 revised 19 August 2014; accepted 24 August 2014

If the response to treatment depends on genetic biomarkers, it is important to identify predictive
biomarkers that define (sub-)populations where the treatment h positive benefit risk balance. One
approach to determine relevant subpopulations are \ubynup analyses where the treatment effect is
estimated in biomarker positive and biomarker negative groups. Subgroup analyses are challeng
because several types of risks are associated with mﬁ.n.ncc on subgroups. On the one hand, by disre-
garding a relevant subpopulation a treatment option may be missed due to a dilution of the treatment
effect in the full population. Furthermore, even if the diluted treatment effect can be demonstrated in
an overall population, it is not ethical to treat patients that do not benefit from the treatment when they
can be identified in advance. On the other hand, selecting a spurious subpopulation increases the risk
to restrict an efficacious treatment to a too narrow fraction of a potential benefiting population. We
propose to quzmlil'\ l]n.sc risks \\ilh utility [unclm and investigate nomdupmc amd\ designs (h:u
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Optimized adaptive enrichment designs
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Abstract

Based on a Bayesian decision theoretic approach, we optimize frequentist single- and adaptive two-stage trial designs for
the development of targeted therapies, where in addition to an overall population, a pre-defined subgroup is investigated.
In such settings, the losses and gains of decisions can be quantified by utility functions that account for the preferences of
different stakeholders. In particular, we optimize expected utilities from the perspectives both of a commercial sponsor,
maximizing the net present value, and also of the society, maximizing cost-adjusted expected health benefits of a new
treatment for a specific population. We consider single-stage and adaptive two-stage designs with partial enrichment,
where the proportion of patients recruited from the subgroup is a design parameter. For the adaptive designs, we use a
dynamic programming approach to derive optimal adaptation rules. The proposed designs are compared to trials which
are non-enriched (i.e. the proportion of patients in the subgroup corresponds to the prevalence in the underlying
population). YWe show that partial enrichment designs can substantially improve the expected utiliies. Furthermore,
adaptive partial enrichment designs are more robust than single-stage designs and retain high expected utilities even if the
expected utilities are evaluated under a different prior than the one used in the optimization. In addition, we find that
trials optimized for the sponsor utility function have smaller sample sizes compared to trials optimized under the societal
view and may include the overall population (with patients from the complement of the subgroup) even if there is
substantial evidence that the therapy is only effective in the subgroup.
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