

Digital Endpoints: Key themes from a Multi-stakeholder event

Mia Sato Tackney Research Associate

Motivation

Stride Velocity 95th Centile was qualified by the EMA after a **10-year** journey and required a multi-stakeholder, cross-sector approach.

Dr. Sofía Villar MRC-Biostatistics Unit

Dr. Amber Steele National Institute of Health Research

> Research Support Service

Where are we at now? What challenges do we face?

Outline

Understanding Patient Engagement

Ongoing Ethical Reflection

Environmental Impact

Validation

Seasonal Variation

Missing Data

Simulation Study

Understanding Patient Engagement

Involving patients in design and testing of digital walk tests and ePROs for Pulmonary Hypertension:

Joseph Newman University of Cambridge & Royal Papworth Hospital

Engagement typically: declines over time depends on disease severity (lower at the extremes)

depends on investigator engagement (site level effect)

[Robertson et al, 2024] [PPIE work by PHA UK]

Understanding Patient Engagement

Investigator-in-the-loop

Ongoing feedback to patients

Implementation Outcomes:

Acceptability: degree to which an intervention is perceived to be agreeable

Adoption: intention to adopt or initial implementation of intervention

Appropriateness: perceived suitability and usefulness of intervention to address problem

Feasibility: fit and suitability of the intervention for everyday use

Fidelity: the extent to which an intervention is implemented as intended

Implementation cost: costs associated with implementation, including cost of delivery of the intervention and cost associated with the implementation strategy used

Penetration: diffusion into practice

Sustainability: sustained use of the intervention

ImpRes Tool [Hull et al, 2019]

Zarnie Khadjesari University of East Anglia

NASSS framework: Nonadoption, abandonment, scale-up, spread, and sustainability

[Greenhalgh et al, 2017]

Ongoing Ethical Reflections

Ethical reflection is needed **throughout** the study:

- Privacy of bystanders, e.g. family members when wearable cameras are used;
- Feedback to patients, e.g. if worsening health is identified by a remote device.

"Ethics clubs"

Regular discussions in Steering Committee

Feedback procedures with patients

[Muurling et al, 2023]

Federica Lucivero Ethox, University of Oxford

Environmental Impact

The carbon footprint due to digital devices in trials needs to be quantified.

Detailed guidance by Low Carbon Clinical Trials Group:

Use

Manufacture

Transport

Data Storage

6.3. Equipment and supplies provided to participants specifically for the trial

Smartphone: For a smartphone, account for 55 kgCO₂e from manufacture and add 5.5 kgCO₂e per year of usage.

Source: Examining the Carbon Footprint of Devices - Sustainable Software (microsoft.com)¹⁹

Tablet: For a tablet, account for 119 kgCO₂e from manufacture and add 10kg CO₂e per year of usage. Assume a maximum lifetime of 3 years, therefore 30 kg CO₂e is the total possible carbon footprint that can be attributed to use.

Source: Examining the Carbon Footprint of Devices - Sustainable Software (microsoft.com) 19

Wearables/smart watch: For a smart watch, account for $30.1 \text{ kg CO}_2\text{e}$ for manufacture and add $1.633 \text{ kg CO}_2\text{e}$ per year of usage. Assume a maximum lifetime of 3 years, therefore 4.9 kg CO₂e is the total possible carbon footprint that can be attributed to use.

Source: Apple Watch SE Product Environmental Report²²

To calculate the carbon footprint associated with shipment of the devices, please refer to section 1.2.

[Griffiths et al, 2024]

Validation of Digital Endpoints

V3+ framework

[Bakker et al, 2024]

Stride Velocity 95th Centile

- Concurrent validity
- Sensitivity to disease progression
- Sensitivity to treatment

Validation of Digital Endpoints

V3+ framework

[Bakker et al, 2024]

Seasonal Variation and Missing data

Bellerophon Phase II Study

Evaluated whether **inhaled nitric oxide** improves physical activity in patients with Pulmonary Hypertension associated with Interstitial Lung disease.

Primary endpoint: 6 Minute Walk Test **Exploratory endpoint**: Moderate-to-Vigorous physical activity (used in a subsequent Phase III study)

[King et al, 2021]

Simulation Study

Seasonal Variation: Recruitment between January-July

Suppose some individuals recruited in winter have a seasonal increase in MVPA at follow-up.

Missing data: Days are compliant if wear time \geq 600 minutes. Individuals are included in the analysis if \geq 14 compliant days. Suppose some individuals are:

- non-compliant on a random selection of days (MCAR)
- non-compliant on days when they are less active (MNAR)

 $\begin{array}{l} y_{i,j}: \text{ daily time spent in MVPA for individual } i \text{ on day } j \\ \hline y_{i,i}: \text{ average of spent in MVPA for individual } i \text{ from compliant days} \\ \hline \overline{y_{i,i}} = \beta_0 + \beta_1 baseline_i + \beta_2 treat_i + \epsilon_i \qquad \text{where } \epsilon_i \sim N(0, \sigma^2) \end{array}$

• Effect of treatment: 12.5 min/day

- Effect of treatment: 12.5 min/day
- 10% of individuals experience seasonal effect: Increased **standard error**

- Effect of treatment: 12.5 min/day
- 10% of individuals experience seasonal effect: increased standard error
- Interaction with treatment:
 bias and increased standard error

- Effect of treatment: 12.5 min/day
- 10% of individuals experience seasonal effect: increased standard error
- Interaction with treatment:
 bias and increased standard error

Strategies:

- Recruit at appropriate times of year
- Adjust for season in the analysis
- Randomisation procedures,
 - e.g. Maximum Tolerated Imbalance

Missing data

• 10% of individuals have missing data: Under MCAR: increased **standard error**

Missing data

 10% of individuals have missing data: Under MCAR: increased standard error Under MNAR: bias and increased standard error

Missing data

- 10% of individuals have missing data: Under MCAR: increased standard error Under MNAR: bias and increased standard error
- Impact is greater when the proportion of missing data is increased

Strategies:

- Implementation strategies to reduce missing data
- Define/handle missingness at a granular level and sensitivity analyses

Discussion

- Pre-specification on digital endpoints and standardization in reporting
- Open-source software and standardised terminology
- Support from funders for interdisciplinary and cross-sector collaboration
- Early engagement between academics/funders and regulators

Research Article

Digital Endpoints in Clinical Trials: Emerging Themes from a Multi-stakeholder Knowledge Exchange Event

Unleashing the Full Potential of Digital Endpoints: Eight Questions that Need Attention

Mia S. Tackney^{1*}, James R. Carpenter^{2,3} and Sofía S. Villar¹

Pre-prints available upon request: Mia.Tackney@mrc-bsu.cam.ac.uk

References

Robertson et al, 2024. The Digital 1-Minute Walk Test: A New Patient-centered Cardiorespiratory Endpoint. doi: <u>10.1164/rccm.202310-1855LE</u>

PHA UK. Clinical trials: What matters to you? https://www.phauk.org/clinical-trials-what-matters-to-you/

Greenhalgh et al, 2017. Beyond adoption: A new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies: doi: <u>10.2196/jmir.8775</u>

Hull et al, 2019. Designing high-quality implementation research: development, application, feasibility and preliminary evaluation of the implementation science research development (ImpRes) tool and guide. doi: <u>10.1186/s13012-019-0897-z</u>

Muurling et al, 2023. Ethical challenges of using remote monitoring technologies for clinical research: A case study of the role of local research ethics committees in the RADAR-AD study. doi: 10.1371/journal.pone.0294797

Griffiths et al, 2024. Quantifying the carbon footprint of clinical trials: guidance development and case studies. doi: <u>10.1136/bmjopen-2023-075755</u>

Bakker et al, 2024. V3+: An extension to the v3 framework to ensure user-centricity and scalability of sensor-based digital health technologies.

King, et al, 2022. A Phase-2 Exploratory Randomized Controlled Trial of INOpulse in Patients with Fibrotic Interstitial Lung Disease Requiring Oxygen. doi: <u>10.1513/AnnalsATS.202107-864OC</u> [Phase II study: NCT01457781, Phase III study: NCT03267108]

Validation of Digital Endpoints

Analytical Validation	
Accuracy	Mean difference between digital and traditional endpoint, and its standard deviation
Repeatability	Intra-cluster correlation between repeated measurements
Robustness	Low variation over time Check differences in different conditions
Clinical Validation	
Known-Groups Validity	Comparison of medians of digital endpoint between patients with disease and healthy controls
Concurrent Validity	Compute correlations between digital and traditional endpoints.
Sensitivity to disease progression	Compute change in median of digital endpoint between baseline and follow-up. Compare with gold standard endpoints.
Sensitivity to treatment	Calculate change in median of digital endpoint in patients who have started on a treatment.