
Forecasting with Confidence: Harnessing Predictive Probabilities in Adaptive Clinical Trial Design

Cora Allen-Savietta Berry Consultants

thanks to my co-authors Joe Marion, Liz Lorenzi, Kert Viele, & Scott Berry

Berry Consultants

Predicting Future Outcomes from Current Data

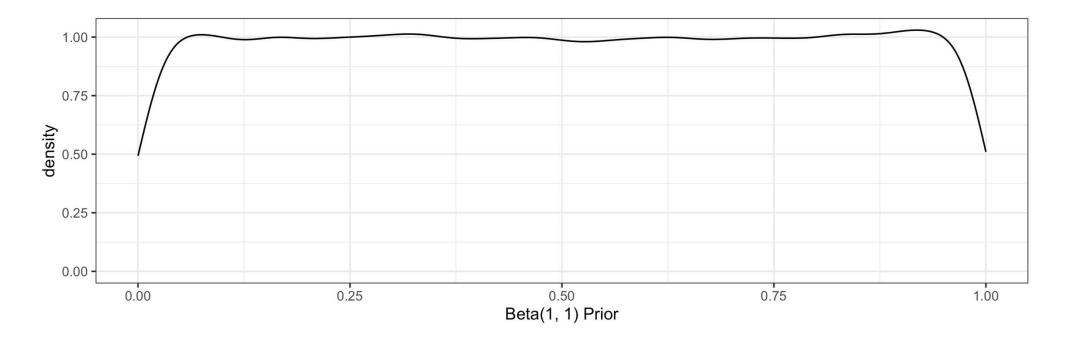
Given 50 observed patients, what is the probability of success at 100?

What do current data show?

	posterior probability	conditional power	predictive probability		
Assumptions	incorporates prior information	frequentist calculation, no priors	incorporates prior information		
Information	currently observed data	currently observed data	currently observed data		
Goal	summarizes current information + prior	predicts trial success assuming a precise future treatment effect	predicts trial success based on a distribution of possible future treatment effects		

Given observed interim data, how likely is a win if all future data show an assumed treatment effect?

	posterior probability	conditional power	predictive probability		
Assumptions	incorporates prior information	typically frequentist, no priors	incorporates prior information		
Information	currently observed data	currently observed data	currently observed data		
Goal	summarizes current information + prior	predicts trial success assuming a single future treatment effect	predicts trial success based on a distribution of possible future treatment effects		


Given the observed data and distribution of treatment effects, how likely is a win?

	posterior probability	conditional power	predictive probability		
Assumptions	incorporates prior information	typically frequentist, no priors	incorporates prior information		
Information	currently observed data	rrently observed data currently observed data currently			
Goal	summarizes current information + prior	predicts trial success assuming a precise future treatment effect	predicts trial success based on a distribution of possible future treatment effects		

centered at prior estimate

 $\theta \sim \text{Beta}(\alpha, \beta)$

Bayesian Adaptive Methods for Clinical Trials. Berry et al. 2011

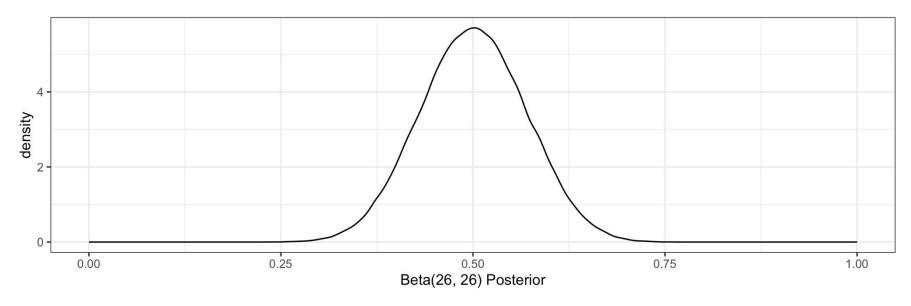
centered at prior estimate

 $\theta \sim \text{Beta}(\alpha, \beta)$

 $x_1 \sim \text{Binomial}(n_1, \theta)$

observed data at N = 50 25 wins, 25 failures

> > Bayesian Adaptive Methods for Clinical Trials. Berry et al. 2011


centered at prior estimate

 $\theta \sim \text{Beta}(\alpha, \beta)$

observed data at N = 50 25 wins, 25 failures $x_1 \sim \text{Binomial}(n_1, \theta)$

posterior distribution

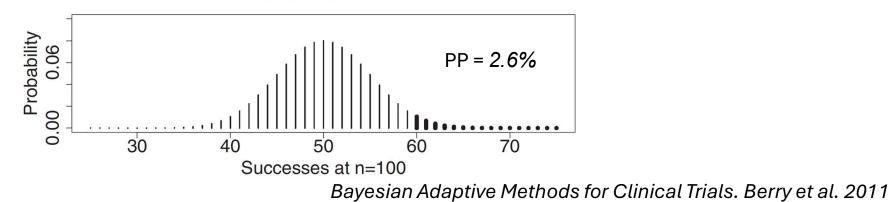
 $\theta | x_1, n_1 \sim \text{Beta}(\alpha + x_1, \beta + n_1 - x_1)$

Bayesian Adaptive Methods for Clinical Trials. Berry et al. 2011

centered at prior estimate

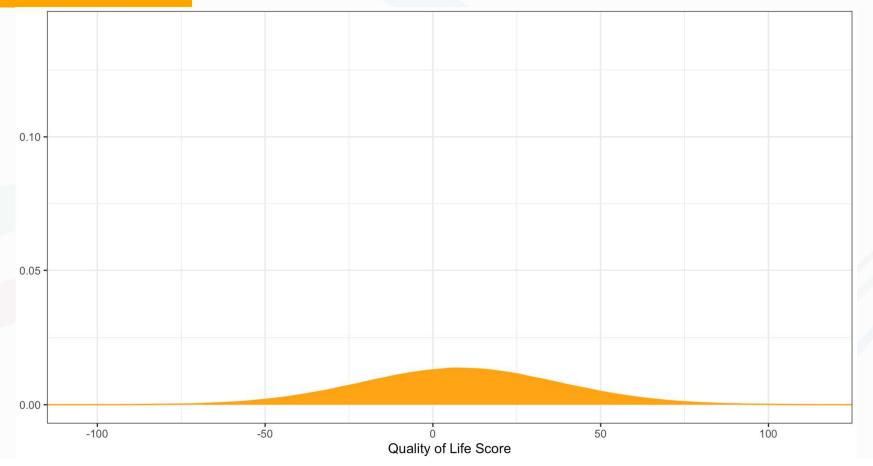
 $\theta \sim \text{Beta}(\alpha, \beta)$

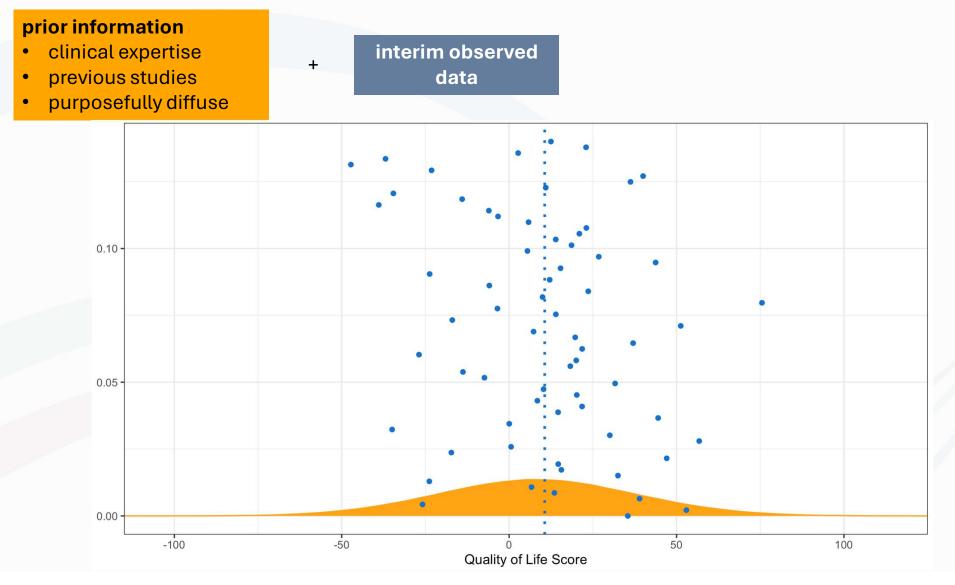
observed data at N = 50 25 wins, 25 failures $x_1 \sim \text{Binomial}(n_1, \theta)$

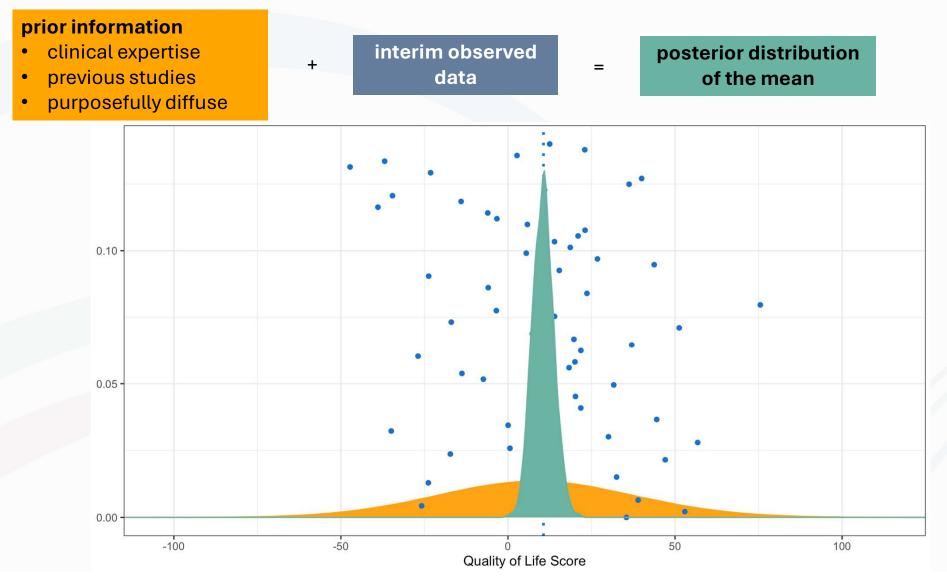

posterior distribution

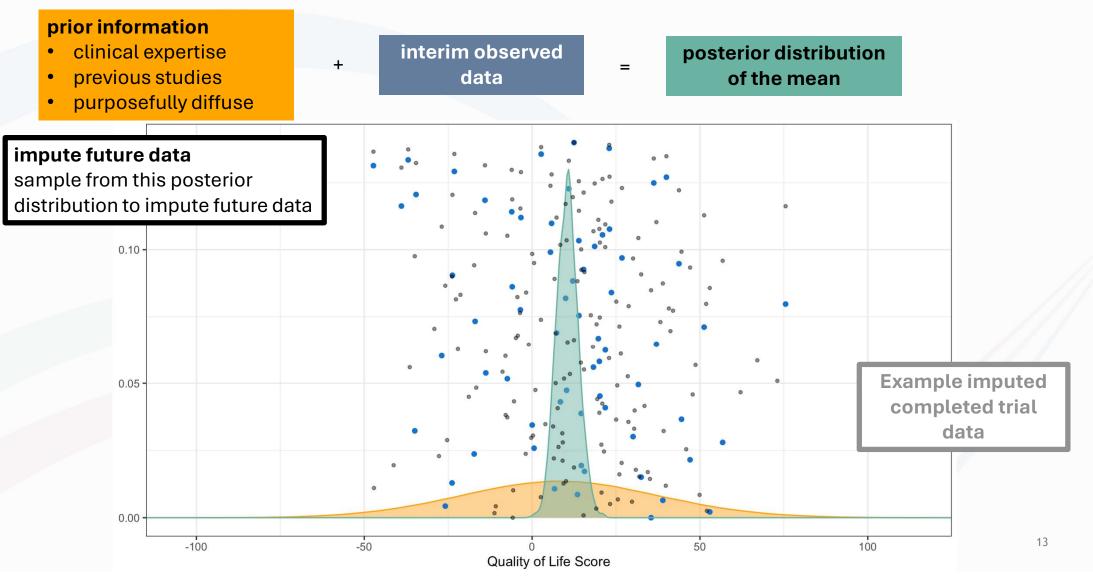
predictive distribution for next n_2 observations

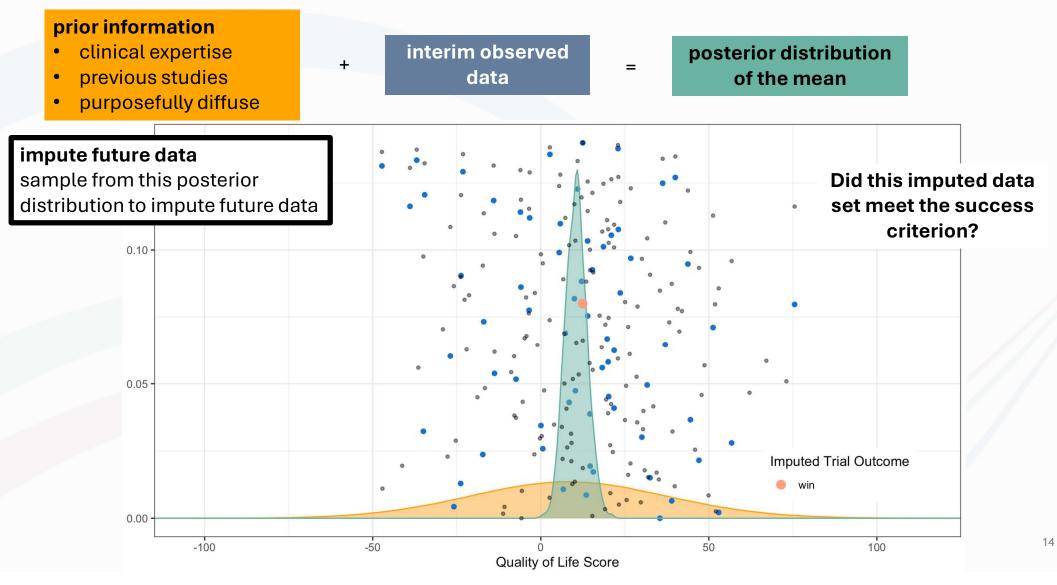
$$\theta | x_1, n_1 \sim \text{Beta}(\alpha + x_1, \beta + n_1 - x_1)$$

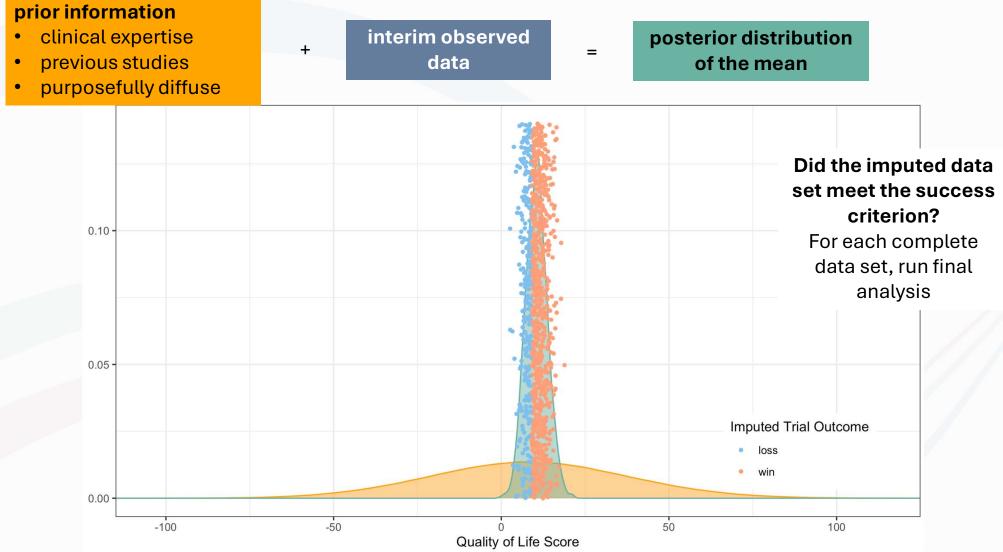

$$x_2 \mid n_1, \alpha + x, \beta + n_1 - x_1 \sim \text{Beta-Binomial}(n_2, \alpha + x_1, \beta + n_1 - x_1)$$

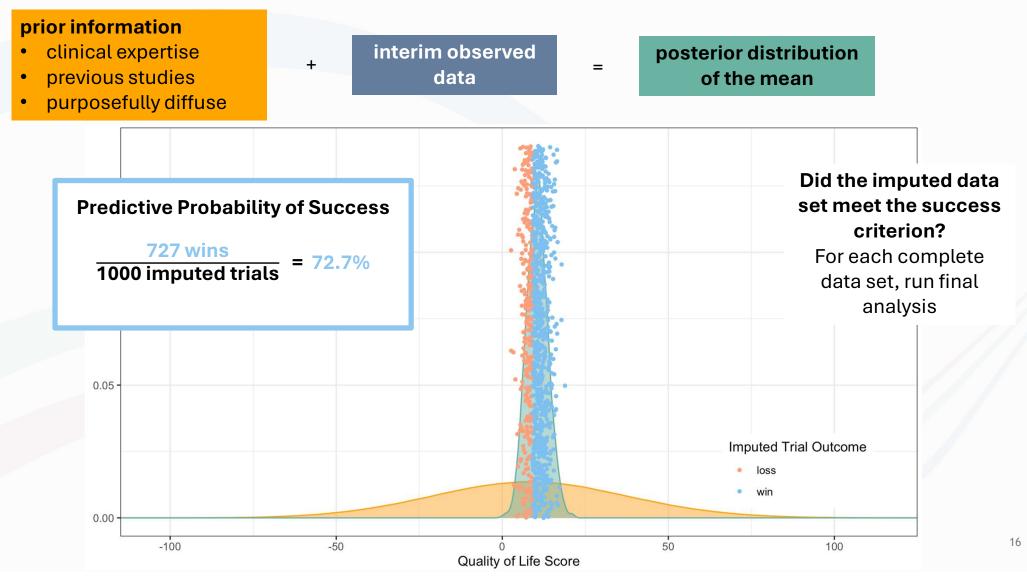

Predictive Distribution for Success at n=100




Calculating a Predictive Probability of Success: Prior information Monte Carlo Integration


- clinical expertise
- previous studies
- purposefully diffuse





When would we need predictive probabilities?

• To choose a sample size at a prespecified interim analysis

The NEW ENGLAND JOURNAL of MEDICINE

SPECIALTIES V TOPICS V MULTIMEDIA V CURRENT ISSUE V LEARNING/CME V AUTHOR CENTER PUBLICATIONS V

ORIGINAL ARTICLE

f in 🖂

Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct

Authors: Raul G. Nogueira, M.D., Ashutosh P. Jadhav, M.D., Ph.D., Diogo C. Haussen, M.D., Alain Bonafe, M.D., Ronald F. Budzik, M.D., Parita Bhuva, M.D., Dileep R. Yavagal, M.D., Marc Ribo, M.D., Christophe Cognard, M.D., Ricardo A. Hanel, M.D., Cathy A. Sila, M.D., Ameer E. Hassan, D.O., Monica Millan, M.D., Elad I. Levy, M.D., Peter Mitchell, M.D., Michael Chen, M.D., Joey D. English, M.D., Qaisar A. Shah, M.D., Frank L. Silver, M.D., Vitor M. Pereira, M.D., Brijesh P. Mehta, M.D., Blaise W. Baxter, M.D., Michael G. Abraham, M.D., Pedro Cardona, M.D., Erol Veznedaroglu, M.D., Frank R. Hellinger, M.D., Lei Feng, M.D., Jawad F. Kirmani, M.D., Demetrius K. Lopes, M.D., Brian T. Jankowitz, M.D., Michael R. Frankel, M.D., Vincent Costalat, M.D., Nirav A. Vora, M.D., Albert J. Yoo, M.D., Ph.D., Amer M. Malik, M.D., Anthony J. Furlan, M.D., Marta Rubiera, M.D., Roger J. Lewis, M.D., Ph.D., Wade S. Smith, M.D., Ph.D., David S. Liebeskind, M.D., Jeffrey L. Saver, M.D., and Tudor G. Jovin, M.D., for the DAWN Trial Investigators^{*} 40 Author Info & Affiliations

Published November 11, 2017 | N Engl J Med 2018;378:11-21 | DOI: 10.1056/NEJMoa1706442 | VOL. 378 NO. 1

Berry Consultants

STATISTICAL ANALYSIS

The adaptive trial design allowed for a sample size ranging from 150 to 500 patients. During interim analyses, the decision to stop or continue enrollment was based on a prespecified calculation of the probability that thrombectomy plus standard care would be superior to standard care alone with respect to the first primary end point. The enrichment trial design gave us the flexibility to identify whether the benefit of the trial intervention was restricted to a subgroup of patients with relatively small infarct volumes at baseline. The interim analyses, which included patients with available follow-up data at the time of the analysis, were prespecified to test for the futility, enrichment, and success of the trial.

When would we need predictive probabilities?

• To identify subgroups benefiting most from a treatment

The NEW ENGLAND JOURNAL of MEDICINE

SPECIALTIES V TOPICS V MULTIMEDIA V CURRENT ISSUE V LEARNING/CME V AUTHOR CENTER PUBLICATIONS V Q

ORIGINAL ARTICLE

f in 🗅

Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct

Authors: Raul G. Nogueira, M.D., Ashutosh P. Jadhav, M.D., Ph.D., Diogo C. Haussen, M.D., Alain Bonafe, M.D., Ronald F. Budzik, M.D., Parita Bhuva, M.D., Dileep R. Yavagal, M.D., Marc Ribo, M.D., Christophe Cognard, M.D., Ricardo A. Hanel, M.D., Cathy A. Sila, M.D., Ameer E. Hassan, D.O., Monica Millan, M.D., Elad I. Levy, M.D., Peter Mitchell, M.D., Michael Chen, M.D., Joey D. English, M.D., Qaisar A. Shah, M.D., Frank L. Silver, M.D., Vitor M. Pereira, M.D., Brijesh P. Mehta, M.D., Blaise W. Baxter, M.D., Michael G. Abraham, M.D., Pedro Cardona, M.D., Erol Veznedaroglu, M.D., Frank R. Hellinger, M.D., Lei Feng, M.D., Jawad F. Kirmani, M.D., Demetrius K. Lopes, M.D., Brian T. Jankowitz, M.D., Michael R. Frankel, M.D., Vincent Costalat, M.D., Nirav A. Vora, M.D., Albert J. Yoo, M.D., Ph.D., Amer M. Malik, M.D., Anthony J. Furlan, M.D., Marta Rubiera, M.D., Roger J. Lewis, M.D., Ph.D., Wade S. Smith, M.D., Ph.D., David S. Liebeskind, M.D., Jeffrey L. Saver, M.D., and Tudor G. Jovin, M.D., for the DAWN Trial Investigators^{*} 40</sup> Author Info & Affiliations

Published November 11, 2017 | N Engl J Med 2018;378:11-21 | DOI: 10.1056/NEJMoa1706442 | VOL. 378 NO. 1

Serry Consultants

STATISTICAL ANALYSIS

The adaptive trial design allowed for a sample size ranging from 150 to 500 patients. During interim analyses, the decision to stop or continue enrollment was based on a prespecified calculation of the probability that thrombectomy plus standard care would be superior to standard care alone with respect to the first primary end point. The enrichment trial design gave us the flexibility to identify whether the benefit of the trial intervention was restricted to a subgroup of patients with relatively small infarct volumes at baseline. The interim analyses, which included patients with available follow-up data at the time of the analysis, were prespecified to test for the futility, enrichment, and success of the trial.

When would we need predictive probabilities?

• To identify subgroups benefiting most from a treatment

FDA NEWS RELEASE

FDA expands treatment window for use of clot retrieval devices in certain stroke patients

https://www.fda.gov/news-events/press-announcements/fda-expands-treatment-window-use-clot-retrieval-devicescertain-stroke-patients

When would we want to use a predictive probability?

• To determine if additional data are likely to provide convincing evidence of a treatment effect. In other words, **should the trial stop for futility**?

The NEW ENGLAND JOURNAL of MEDICINE

SPECIALTIES V TOPICS V MULTIMEDIA V CURRENT ISSUE V LEARNING/CME V AUTHOR CENTER PUBLICATIONS V

ORIGINAL ARTICLE

f in 🖾

Randomized Trial of Three Anticonvulsant Medications for Status Epilepticus

Authors: Jaideep Kapur, M.B., B.S., Ph.D., Jordan Elm, Ph.D., James M. Chamberlain, M.D., William Barsan, M.D., James Cloyd, Pharm.D., Daniel Lowenstein, M.D., Shlomo Shinnar, M.D., Ph.D., +6, for the NETT and PECARN Investigators^{*} Author Info & Affiliations

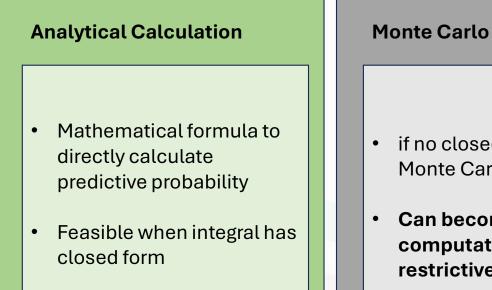
Published November 27, 2019 | N Engl J Med 2019;381:2103-2113 | DOI: 10.1056/NEJMoa1905795 VOL. 381 NO. 22

When would we want to use a predictive probability?

The NEW ENGLAND									
JOURNAL of MEDICINE	Table S6. Computations of the futility analysis								
SPECIALTIES \checkmark TOPICS \checkmark MULTIMEDIA \checkmark CURRENT ISSUE \checkmark									
		Predictive prob	ability that an arm i	s identified as					
ORIGINAL ARTICLE		best / wors	st at maximum sam	ple size*	Predictive probability				
	Look	Levetiracetam	Fosphenytoin	Valproate	 that any arm Wins** 				
Randomized Trial of Three .		Loronacotam	, copilolity tour	(aproato					
Medications for Status Epile	Applysis ofter 400-Eprollmont								
Medications for Status Lpin	Analysis after 400 ^s Enrollment (N=384 unique subjects)								
Authors: Jaideep Kapur, M.B., B.S., Ph.D., Jordan Elm, Ph.D., Jar									
Cloyd, Pharm.D., Daniel Lowenstein, M.D., Shlomo Shinnar, M.									
Investigators* Author Info & Affiliations	* Maximum sample size was assumed to be 720 unique subjects for calculation of the predictive								
Published November 27, 2019 N Engl J Med 2019;381:2103-	probabilities.								
<u>VOL. 381 NO. 22</u>									
I I I I I I I I I I I I I I I I I I I									

When would we want to use a predictive probability?

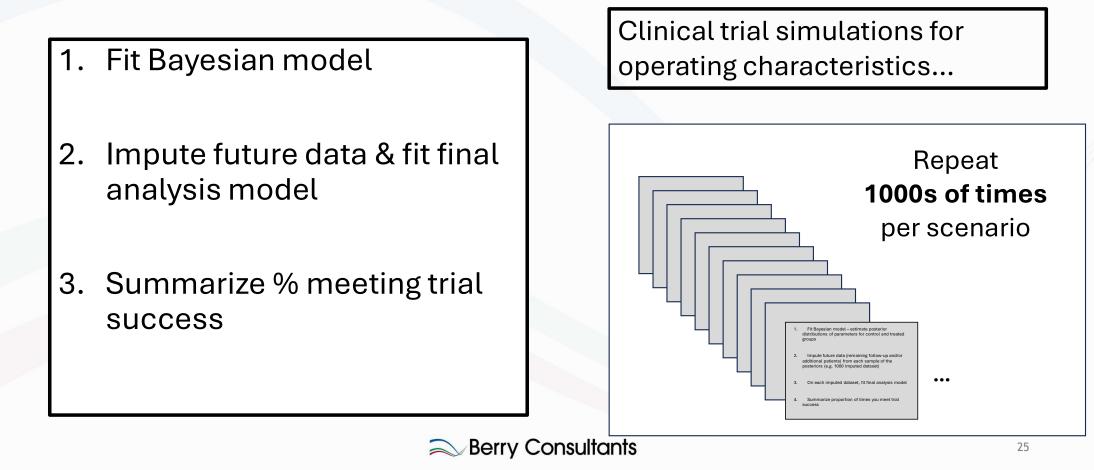
The NEW ENGLAND									
JOURNAL of MEDICINE	Table S6. Computations of the futility analysis								
SPECIALTIES V TOPICS V MULTIMEDIA V CURRENT ISSUE V									
ORIGINAL ARTICLE			ability that an arm st at maximum sar		Predictive probability				
Randomized Trial of Three	Look	Levetiracetam	Fosphenytoin	Valproate	 that any arm Wins** 				
Medications for Status Epile	Analysis after 400 [,] Enrollment (N=384 unique subjects)	.0013 / .0008	.002 / .0027	.0022 / .0013	0.01				
Authors: Jaideep Kapur, M.B., B.S., Ph.D., Jordan Elm, Ph.D., Jai									
Cloyd, Pharm.D., Daniel Lowenstein, M.D., Shlomo Shinnar, M. Investigators [*] Author Info & Affiliations	* Maximum sample size was assumed to be 720 unique subjects for calculation of the predictive								
Published November 27, 2019 N Engl J Med 2019;381:2103-	probabilities.								
VOL. 381 NO. 22 ** This represents the sum of the predictive probabilities arm is best/worst at the maximum sample size ach of the 3 groups. If this sum is < 5%, the trial stops for futility.									
was not included in the intention-to-treat and	lysis. In November 2017, enr	ollment was							
discontinued at the recommendation of the d			al						
met the predefined futility criterion in a planned interim analysis, since there was a 1%									


chance of showing a most effective or least effective treatment if the trial were to continue to

the maximum sample size. Computations for the futility analysis are given in Table S6. A

Computing Bayesian Predictive Probabilities

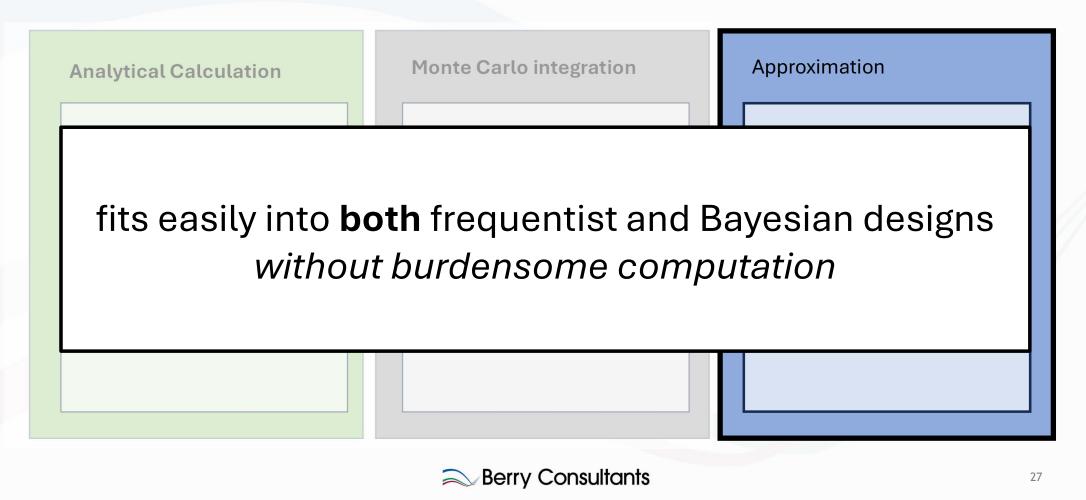
Computing Bayesian Predictive Probabilities


Very fast •

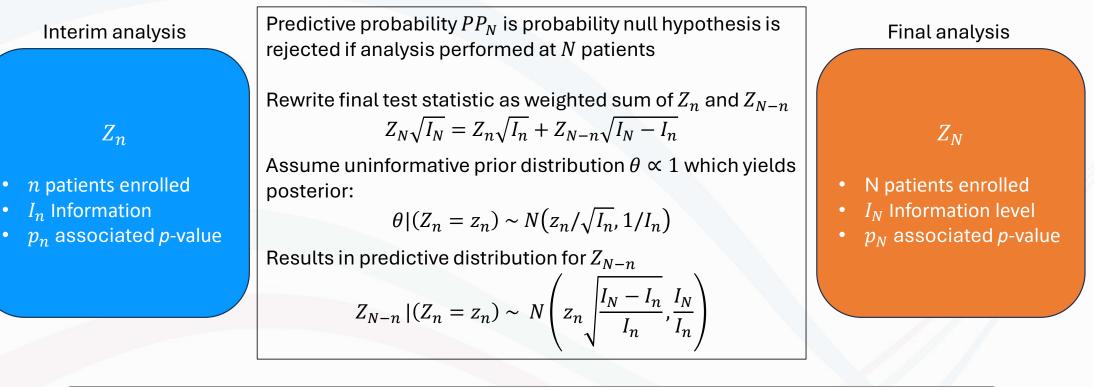
Monte Carlo integration

- if no closed form, requires Monte Carlo integration
- **Can become** computationally restrictive

Monte Carlo Integration for Bayesian Predictive Probabilities



Computing Bayesian Predictive Probabilities



Computing Bayesian Predictive Probabilities

Predictive Probability Approximation

$$PP(p_n, r, \alpha) = \Phi\left(\frac{\Phi^{-1}(1 - p_n) - \Phi^{-1}(1 - \alpha)\sqrt{r}}{\sqrt{1 - r}}\right)$$

Predictive Probability Approximation

$$PP(p_n, r, \alpha) = \Phi\left(\frac{\Phi^{-1}(1 - p_n) - \Phi^{-1}(1 - \alpha)\sqrt{r}}{\sqrt{1 - r}}\right)$$

Requires only:

- p: interim p-value
- n: information at interim
- N: expected information at trial end

Easy-to-use R functions at

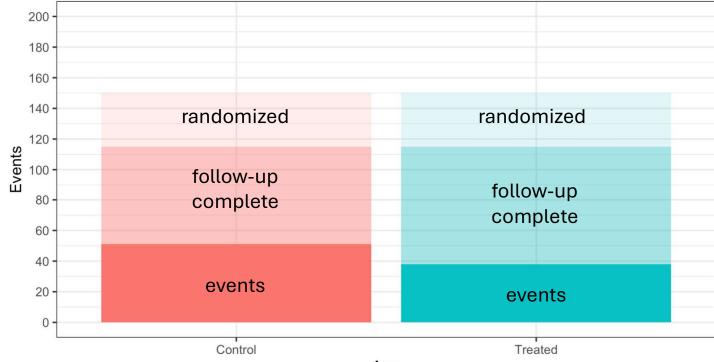
github.com/BerryConsultants/approximatePredictiveProbability

Applying the Approximate Predictive Probability

Endpoint	Example analysis	In	Ι _N
Continuous	T-tests ANOVA/ANCOVA	Interim sample size	Final sample size
Binary	z-tests Chi-squared tests	Interim sample size	Final sample size
Time-to-event	Log-rank test Proportional hazards models	Events at interim	Events at final
Ordinal/ Non-parametric	Ordinal regression Wilcoxon rank-sum	Interim sample size	Final sample size
Count data	Generalized linear regressions (e.g. Poisson regression)	Interim exposure	Final exposure

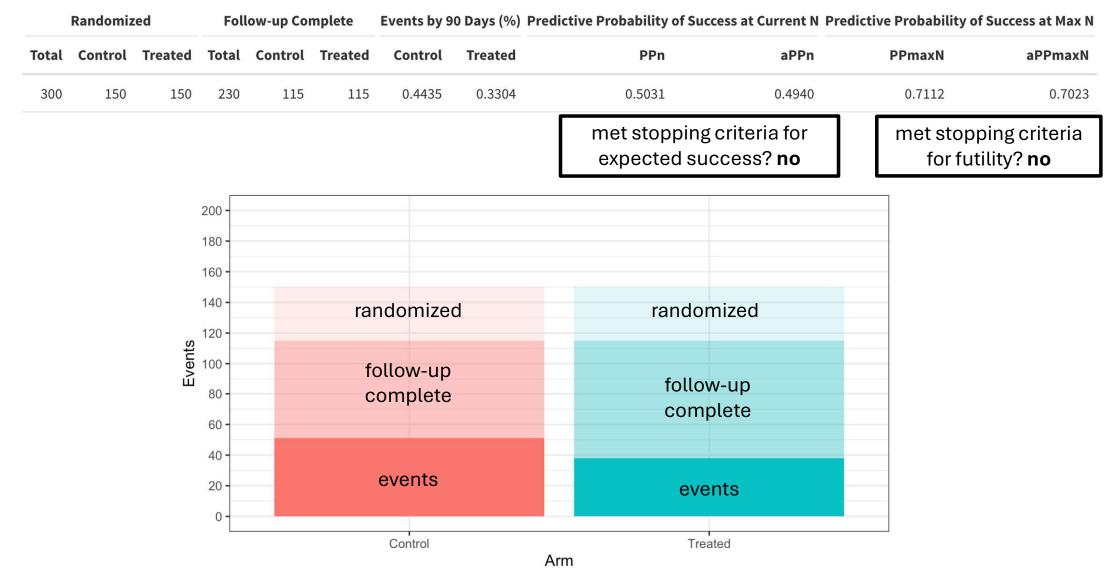
Key Assumptions:

- primary analysis test statistic ~ Normal
- $r = I_n/I_N$ known

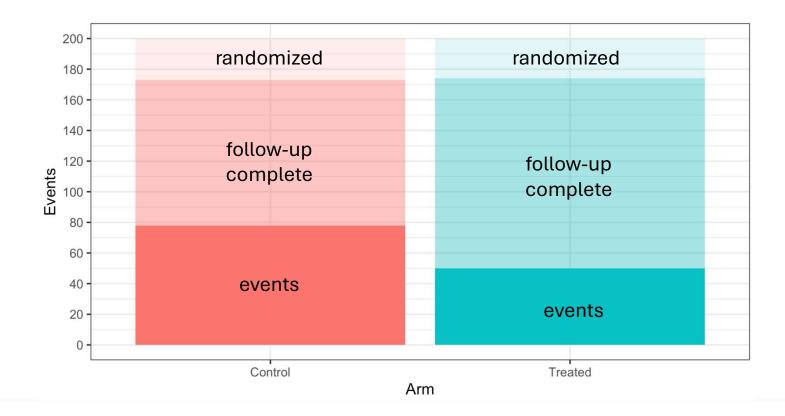

Example: Frequentist Binary Endpoint

- Primary Endpoint: Did a participant die by 90 days?
 - Chi-square analysis
- Maximum Sample Size: 500
 - Interim Goldilocks-style* sample size re-estimations:
 - n = 300 randomized
 - n = 400 randomized
- At each interim, the algorithm can:
 - Stop trial enrollment for expected success at this sample size if $PP_n > 90\%$
 - Stop trial enrollment for futility if $PP_{500} < 5\%$ or
 - Continue trial enrollment

*Broglio et al. 2014 Not Too Big, Not Too Small: A Goldilocks Approach To Sample Size Selection

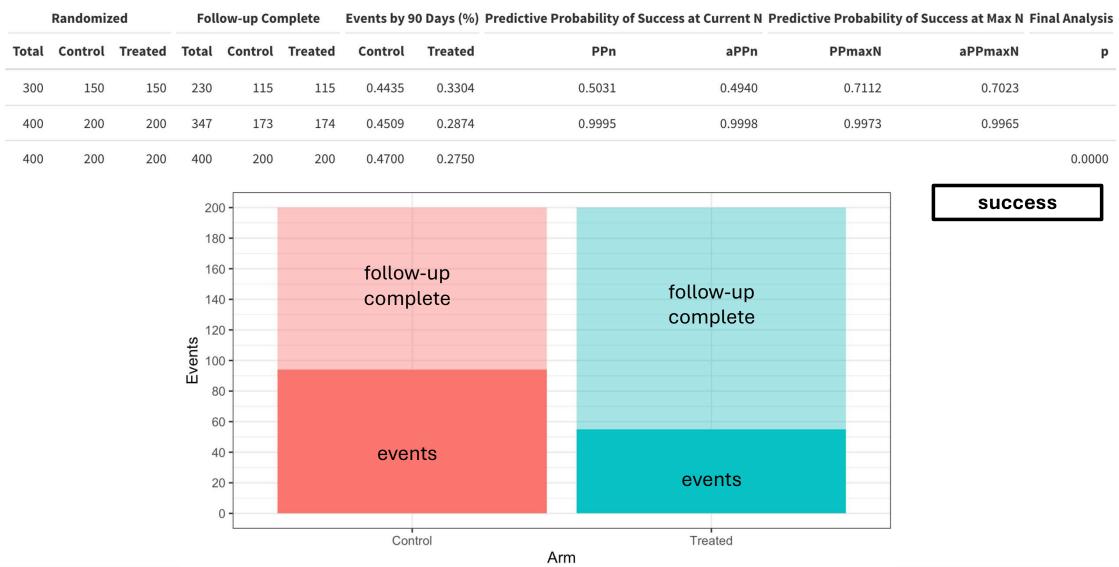

Interim 1: 300 Randomized

	Randomized		Follow-up Complete		mplete	Events by 9	0 Days (%)	Predictive Probability of Success at Current N		Predictive Probabilit	ty of Success at Max N
Total	Control	Treated	Total	Control	Treated	Control	Treated	PPn	aPPn	PPmaxN	aPPmaxN
300	150	150	230	115	115	0.4435	0.3304	0.5031	0.4940	0.7112	0.7023


Arm

Interim 1: 300 Randomized

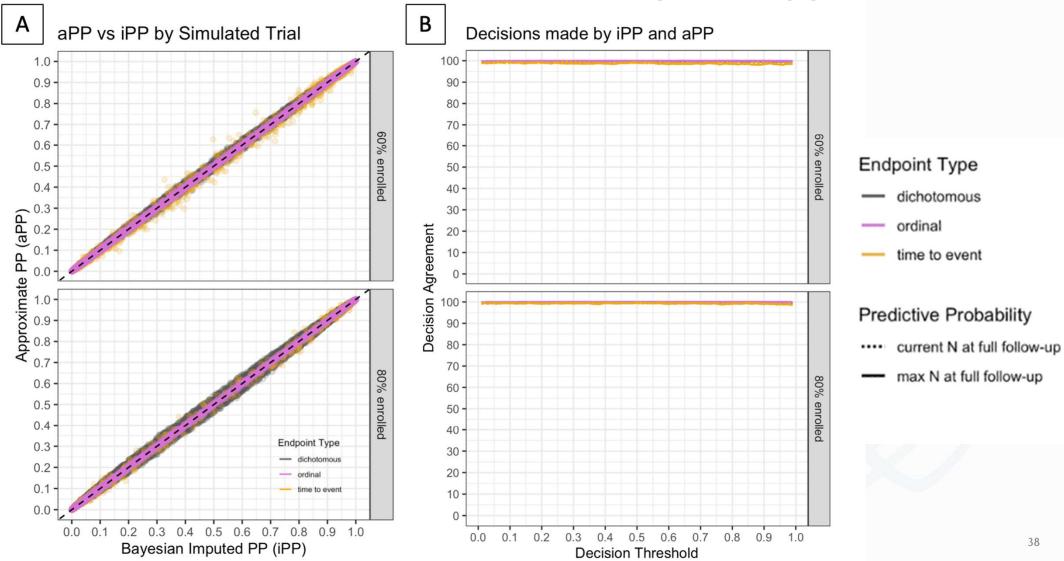
Interim 2: 400 Randomized


	Randomized		Follow-up Complete		Events by 9	0 Days (%)	Predictive Probability of Success at Current N		Predictive Probabilit	y of Success at Max N	
Total	Control	Treated	Total	Control	Treated	Control	Treated	PPn	aPPn	PPmaxN	aPPmaxN
300	150	150	230	115	115	0.4435	0.3304	0.5031	0.4940	0.7112	0.7023
400	200	200	347	173	174	0.4509	0.2874	0.9995	0.9998	0.9973	0.9965

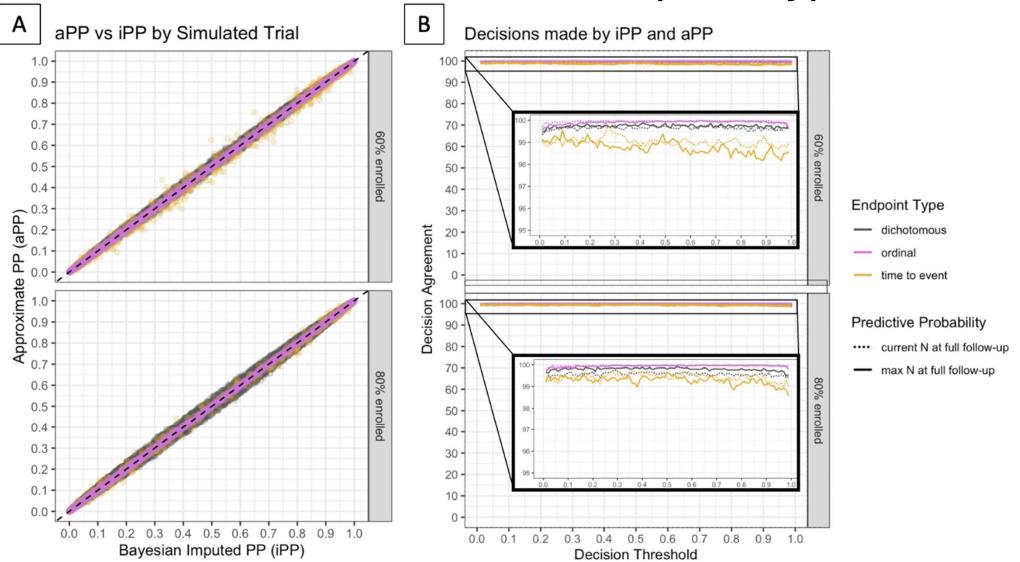
Interim 2: 400 Randomized

	Randomized			low-up Co	w-up Complete Events by 90 Days (%)) Predictive Probability of Success at Current N Predictive Probability of Success at M				Success at Max N	
Total	Control	Treated	Total	Control	Treated	Control	Treated		PPn	aPPn		PPmaxN	aPPmaxN
300	150	150	230	115	115	0.4435	0.3304		0.5031	0.4940		0.7112	0.7023
400	200	200	347	173	174	0.4509	0.2874		0.9995	0.9998		0.9973	0.9965
								met	criteria for expec yes	ted success?	?		a for futility? no
			200 - 180 -		rar	ndomized	t		randomiz	zed			
			160 - 140 -										
		Events	120 -		foll cor				follow-ı comple	-			
	80 - 60 -												
	40 - 20 -					events			event	S			
			0 -			Control		Arm	Treated				

Final Analysis



Simulation Studies


- Interims at 60%, 80% information
- imputed predictive probabilities (iPP) vs approximate predictive probabilities (aPP)
- Do the iPP and aPP look similar? Make the same decisions?

Endpoint	Example analysis	In	I _N
Continuous	T-tests ANOVA/ANCOVA	Interim sample size	Final sample size
Binary	Z-tests Chi-squared tests	Interim sample size	Final sample size
Time-to-event	Log-rank test Proportional hazards models	Events at interim	Events at final
Ordinal/Non-parametric	Ordinal regression Wilcoxon rank-sum	Interim sample size	Final sample size
Count data	Generalized linear regressions (e.g. Poisson regression)	Interim exposure	Final exposure

iPP vs aPP across endpoint types

iPP vs aPP across endpoint types

Summary

- Approximate predictive probability from interim z-scores
- Fits easily into both frequentist and Bayesian designs
- High similarity between imputed PP and approximate PP
 - Though there are cases where they disagree (win ratio, analyses with hard-to-compute information)
- Fast: reduces computational burden
 - especially during clinical trial simulations

Marion*, Lorenzi*, Allen-Savietta*, Viele, & Berry. **Predictive Probabilities Made Simple: A Fast and Accurate Method for Clinical Trial Decision Making** *under review, available on arXiv*

GitHub.com/BerryConsultants/approximatePredictiveProbability easy-to-use R functions