Accounting for the recruitment process into Bayesian modeling of vaccine data

> Mauro Gasparini, Marco Ratta Politecnico di Torino

Presentation Outline Sentation Outline

Sentation Columbian

Seduction to Vaccine Efficacy (VE)

Sesian Modeling of Vaccine Efficacy:

Full Likelihood Bayesian model for Vaccine Efficacy

Lation Study Sentation Outline

Sentation Collection

Soduction to Vaccine Efficacy (VE)

- Exact method conditional on the total number of cases

- Full Likelihood Bayesian model for Vaccine Efficacy

Ulation Study

 \triangleright Introduction to Vaccine Efficacy (VE)

 \triangleright Bayesian Modeling of Vaccine Efficacy:

-
-

 \triangleright Simulation Study

 \triangleright Case study

DA

Introduction to Vaccine Efficacy

 $X_c \sim \text{Poisson} (\lambda_c s_c)$

୴ **C** the contract of the contra $X_V \sim \text{Poisson} (\lambda_V S_V)$

 x_c = number of infections in control arm λ \mathcal{N} \mathcal{N} x_c = number of infections in control arm
 x_v = number of infections in vaccine arm
 x_s = Total surveillance time in control arm s_c = Total surveillance time in control arm Λ_c s_v = Total surveillance time in vaccine arm λ_c = Incidence rate in control arm $\lambda_{\rm v}$ = Incidence rate in vaccine arm

Bayesian modeling of Vaccine Efficacy

The likelihood of the unknown parameters λ_{c} and λ_{v} can be expressed $\,$ as:

$$
f(s_v, s_c, x_v + x_c, x_v | \lambda_v, \lambda_c) = f_{S_v, S_c}(s_v, s_c | \lambda_v, \lambda_c) \times \n f_{x_v + x_c | S_v, S_c}(x_v + x_c | s_v, s_c, \lambda_v, \lambda_c) \times \n f_{x_v | x_v + x_c, S_v, S_c}(x_v | x_v + x_c, s_v, s_c, \lambda_v, \lambda_c)
$$

Which is composed by three contributions:

- \triangleright Marginal density of the Surveillance times
- \triangleright Conditional density of the total infections given the surveillance times
- \triangleright Conditional density of the vaccine infections given the total infections and the surveillance times

Exact Method Conditional on the total number of cases

In the current practice the surveillance times and the total number of infections are considered data rather than statistics.

This means that the first two factors of the full likelihood are considered independent from the vaccine efficacy and the likelihood is reduced to:

$$
f(s_v, s_c, x_v + x_c, x_v | \lambda_v, \lambda_c) = f_{X_v | X_v + X_c, S_v, S_c}(x_v | x_v + x_c, s_v, s_c, \lambda_v, \lambda_c)
$$

Which can be proven to be the density of a Binomial distribution

$$
X_v | x_v + x_c
$$
, s_v , $s_c \sim$ Binomial $\left(x_v + x_c$, $\frac{s_v \lambda_v}{s_v \lambda_v + s_c \lambda_c} \right)$

Motivation for the Full Likelihood

Imagine a study of infinite length (no censoring possible), then the ratio between the **Motivation for the Full Likelihood**

Imagine a study of infinite length (no censoring possible), then the ratio between t

surveillance times approximates 1 - VE, in fact
 $S_c^i \sim Exp(\lambda_c)$ $S_c \sim Normal\left(\frac{n_c}{\lambda_c}, \frac{n_c}{\lambda_c^2}\right)$

$$
S_{c}^{i} \sim \text{Exp} (\lambda_{c})
$$
\n
$$
S_{v}^{i} \sim \text{Exp} (\lambda_{v})
$$
\n
$$
S_{v} \sim \text{Normal} \left(\frac{n_{c}}{\lambda_{c}}, \frac{n_{c}}{\lambda_{c}^{2}} \right)
$$
\n
$$
S_{v} \sim \text{Normal} \left(\frac{n_{v}}{\lambda_{v}}, \frac{n_{v}}{\lambda_{v}^{2}} \right)
$$

Which demonstrates that the surveillance times are statistics which depend on VE, hence should be included in the likelihood, but ….

> In practice the study duration is limited, so the above does not hold and censoring process must be taken into account !!

Accounting for the recruitment process

For a generic patient let R be the random recruitment time, T the random time to infection, D the study duration and $C = D - R$ the random censoring time.

Then for the central limit theorem (TCL), then the total surveillance times can be expressed as

 S_c | λ_c ~ Normal (n_c E[min(T_c , C)], n_c Var[min(T_c , C)]) $S_{\rm v}$ | $\lambda_{\rm v}$ ~ Normal ($n_{\rm v}$ E[min($T_{\rm v}$, C)], $n_{\rm v}$ Var[min($T_{\rm v}$, C)])

A class of recruitment densities

In order to exploit the previous result we need to make some assumptions on the recruitment process. In our context we use a parametric linear density recruitment:

Where τ represents the truncation parameter (the fraction of the study used for recruitment) and α is the related to the rate of accrual intensity.

Simulation study

We conduct a 3 simulation studies testing our approach versus the standard one:

- SIMULATION 1: Fixing $\tau = 0.7$ and making VE vary in the set (0.3, 0.5, 0.7, 0.9) and α in the set 0.2, 0.6, 1, 1.4, 1.8).
- SIMULATION 2: Fixing $\alpha = 1$ and making VE vary in the set (0.3, 0.5, 0.7, 0.9) and τ in the set 0.1, 0.3, 0.5, 0.7, 0.9)
- SIMULATION 3: Fixing $VE = (0.3, 0.9)$ and making vary α in the set (0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8) and τ in the set (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

Simulation study

Percentage reduction in the 95% credibility interval (CI) length

 \mathbf{p}

$VE=0.3$

 0.9 2.51 2.67 2.9 3.14 3.47 3.86 4.34 $\overline{5}$ 5.83 5.17 3.84 4.06 4.33 4.72 5.72 6.47 7.43 3.7 5.78 6.05 6.45 6.94 0.7 5.51 5.6 7.58 8.38 9.44 8.13 8.23 8.49 8.87 9.35 10.01 10.88 11.92 8.2 -0.5 11.49 11.48 11.66 11.96 12.43 14.82 11.7 13.03 13.83 15.35 15.42 15.6 15.94 16.45 15.76 15.45 17.06 17.84 19.3 0.3 19.68 19.38 19.23 19.21 19.51 19.79 20.2 20.69 22.34 22.31 22.34 22.4 22.52 22.71 22.94 22.62 22.44 24.16 24.14 24.16 24.16 24.19 24.24 0.1 24.25 24.2 24.29 0.2 1.2 1.4 0.4 0.6 0.8 1.0 1.6 1.8 α

 $VE=0.9$

- The gain is higher for larger values of α
- The gain is higher for **lower** values of τ
- The gain is higher for lower values of VE

Case study: Pfizer/BioNTech trial

 \triangleright More precise point estimation 92.03 [90.1, 93.7] VS 90.98 [88.8, 92.9] 12.7% gain in 95% CI length

 \triangleright Good identifiability in estimation of α and τ 92.03 [90.1, 93.7] VS 90.98 [88.8, 92.9] 12.7% gain in 95% CI length

Discussion

Using the Full Likelihood in the estimation of Vaccine Efficacy (VE) is an improvement over the currently used exact method conditional on the total number of cases, in fact:

- \triangleright It improves the point estimation both in terms of median MSE and mean MSE
- \triangleright It provides shorter credibility intervals (CI)

In particular the gain is higher when:

- \triangleright Recruitment process is fast (low τ , large α)
- \triangleright Vaccine Efficacy (VE) is low

References

- M. Ewell. Comparing methods for calculating confidence intervals for vaccine efficacy. Statistics in Medicine, 15:2379–2392, 1996. 2
- F.P. Polack et al. Safety and efficacy of the bnt162b2 mrna covid-19 vaccine. The New England Journal of Medicine, 383:2603–2615, 2020. 1, 2, 12, 13
- S. Senn. The design and analysis of vaccine trials for covid-19 for the purpose of estimating efficacy. Pharmaceutical Statistics, 21(4):790–807, 2022. 2
- S.J. Thomas et al. Safety and efficacy of the bnt162b2 mrna covid-19 vaccine through 6 months. The New England Journal of Medicine, 385:1761–1773, 2021. 1, 12, 13, 14

Backup slides

Simulation 1

Simulation 2

R