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Example |: Population Imaging with UK Biobank

@ In multimodal clinical research, prospective epidemiology —>
Heterogeneous sources of data, UK Biobank dataset
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Figure: Taken from (Bycroft et al., Nature, 2018)
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Example |: Population Imaging with UK Biobank

@ Given socio-demographics data, brain variables provide additional
information on top of it for predicting cognitive tests?

6 Mental Health Demographics
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Example Il: Genetic Data

@ Given a genomic dataset and kidney stone disease diagnosis:

Ahmad CHAMMA Variable Importance/ Feature Selection PSI Talk | June 17, 2024 3/17



Example Il: Genetic Data

@ Given a genomic dataset and kidney stone disease diagnosis:
o What genes add information w.r.t the outcome given all others?
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Taken from (Howles et al., Nature, 2019)
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@ Given a genomic dataset and kidney stone disease diagnosis:
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Taken from (Howles et al., Nature, 2019)

@ Genes are highly correlated locally (High-correlation)
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Example Il: Genetic Data
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@ Genes are highly correlated locally (High-correlation)

@ Assessing the added information of specific genes is crucial!
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Definition of Variable Importance

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Estimating the influence of a given input feature to the prediction made by
a model
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Types of Interpretations: Local vs Global

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Estimating the influence of a given input feature to the prediction made by
a model

Models' VI
Local VI Global VI
Shapley Additive
LIME Shapley Values Xﬂcii?azeiﬁgie) * -+ |Global importancE
Y (SAGE)
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Types of Interpretations: Local vs Global

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Estimating the influence of a given input feature to the prediction made by
a model

Models' VI
Local VI
Shapley Additive
Mean Decrease |, . .. -
LIME Shapley Values Accuracy (MDA) Globezlsl'r&wgcl)zr)tancE
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Types of Interpretations: Model- Specific vs Agnostic

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Estimating the influence of a given input feature to the prediction made by
a model

Models' VI
Model Specific Model Agnostic
v v 3
Mean Decrease | ... .......... Nb of occurences Mean Decrease
Impurity (MDI) in the forest Accuracy (MDA)
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Types of Interpretations: Model- Specific vs Agnostic

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Estimating the influence of a given input feature to the prediction made by
a model

Models' VI
Model Specific
Mean Decrease | ... ......... Nb of occurences Mean Decrease
Impurity (MDI) in the forest Accuracy (MDA)
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Statistical Guarantees for Variable Importance

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Estimating the influence of a given input feature to the prediction made by
a model

Statistical guarantees are important!

@ Find as many relevant variables while controlling false positives
(Candes et al., Journal of the Royal Statistical Society, 2017)

o 1) Essential for scientific discovery

e 1) Control the risk in study design

e E.g. in genetic analysis, the cost of examining a falsely selected gene
may be intolerable (Zhao et al., AAAI, 2022)

— = = — SaNe;
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Scientific Question/Challenge

Current state-of-the-art

@ Current inference tools in deep learning merely perform
sensitivity analysis
o Interpretation is unclear (Adebayo et al. 2018)
o No statistical control

v
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Scientific Question/Challenge

Current state-of-the-art

@ Current inference tools in deep learning merely perform
sensitivity analysis
o Interpretation is unclear (Adebayo et al. 2018)
o No statistical control

@ Assess the impact of the removal of a given variable = Noisy &
Too expensive

v
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Scientific Question/Challenge

Current state-of-the-art

@ Current inference tools in deep learning merely perform
sensitivity analysis

o Interpretation is unclear (Adebayo et al. 2018)
o No statistical control

@ Assess the impact of the removal of a given variable = Noisy &
Too expensive

Roadmap!

o Find effectively the relevant predictors for the prediction of a
biomedical outcome

e Statistical error control = Controlling the rate of true non-relevant
variables detected as relevant

o High-correlation settings

o High-dimensional settings
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What is the permutation approach?
According to (Breiman, Machine Learning, 2001)

@ Prediction Problem
VatrlablesE N -

Samples

Is variable j important for the
prediction?

Ahmad CHAMMA Variable Importance/ Feature Selection PSI Talk | June 17, 2024 6/17



What is the permutation approach?

According to (Breiman, Machine Learning, 2001)

@ Prediction Problem @ Permuting j

Variables < . Variables . B
(%] ] (%] ]
[F] — [}] —
= - = -
£ £
c - [ ]
(7] (7]

Is variable j important for the o How does perturbing o
prediction? variable j impact prediction?
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What is the permutation approach?

According to (Breiman, Machine Learning, 2001)

@ Prediction Problem @ Permuting j
Variables Variables
X — Y X — Y
- " -
|| 2 ||
% 2# : E :
- c -
]
Is variable j important for the o How does perturbing o
prediction? variable j impact prediction?
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What is the permutation approach?

According to (Breiman, Machine Learning, 2001)

Prediction Problem Permuting j
@ Varlables @ Varlables

How does perturbing

Is variable j important for the
prediction?

= XJ}W Lossafter

Ly 1

Samples
Samples

variable j impact prediction?

Inputs

DNN Lossbe fore

After B permutations, obtain statistical evidence on the significance of variable j

Problem: Does not control errors if variables are correlated
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What is the permutation approach?
According to (Breiman, Machine Learning, 2001)

®

Prediction Problem Permuting j
Variables @ Variables

How does perturbing

Is variable j important for the

Samples
Samples

variable j impact prediction?

prediction?
«‘ Loss, .
0
.g,. m— }perm after
=
DNN| Lossbe fore

After B permutations, obtain statistical evidence on the significance of variable j

Problem: Does not control errors if variables are correlated
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Proposed Solution - Sampling the variable of interest?

o Let d = xJ - & with & = E(xJ|X)

'Ahmad Chamma, Denis A. Engemann, and Bertrand Thirion (2023). “Statistically
Valid Variable Importance Assessment through Conditional Permutations”. In:
Proceedings of the 37th Conference on Neural Information Processing Systems
(NeurlPS), New Orleans, USA. DOI: 10.48550/arXiv.2309-. 07593.
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Proposed Solution - Sampling the variable of interest?

o Let d = x - & with &1 = E(xJ|XJ)

Samling xi from the conditional distribution

=5+ {ej}perm

Why? The dependency between the variable of interest and the remaining
variables is preserved.

'Ahmad Chamma, Denis A. Engemann, and Bertrand Thirion (2023). “Statistically
Valid Variable Importance Assessment through Conditional Permutations”. In:
Proceedings of the 37th Conference on Neural Information Processing Systems
(NeurlPS), New Orleans, USA. DOI: 10.48550/arXiv.2309. 07593.
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Proposed Solution - Novel Implementation®

Importance Block ( nses: )

X ISan:pIed |
) | RF | > X ——> p-values

IE_ T Learner Block ( 744ip )
(Y] > Training /i

Y

Inputs

'Ahmad Chamma, Denis A. Engemann, and Bertrand Thirion (2023). “Statistically

Valid Variable Importance Assessment through Conditional Permutations”. In:
Proceedings of the 37th Conference on Neural Information Processing Systems

(NeurlPS), New Orleans, USA. DOI: 10.48550/arXiv.2309. 07593.
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Proposed Solution - Sampling Phase
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New Benchmark for State-of-the-art Methods

Scenario
O Main effects and Interactions Interactions only O Regression with ReLu Plain linear O Classification
A
Method
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Results on Simulated Data - CPI-DNN

Scenario
© Main effects and Interactions Interactions only O Regression with ReLu Plain linear O Classification
A
Method
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Results on Simulated Data - Type-I error/AUC score

Scenario

© Main effects and Interactions Interactions only ©O Regression with ReLu Plain linear o Classification
A
Method
CPI-DNN Permfit-DNN CPI-RF cpi-knockoff LOCO Lazy VI Conditional-RF dOCRT Marginal
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@ AUC score: Correct significant variables ordering
o Type-l error: Rate of true non-significant variables detected as
relevant
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Results on Simulated Data - Scenarios

Scenario
O Main effects and Interactions O Interactions only O Regression with ReLu Plain linear O Classification
A
Method
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Results on Simulated Data
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Results on Simulated Data

Scenario
O Main effects and Interactions © Interactions only O Regression with ReLu Plain linear O Classification
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Method
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Limitations of the Conditional Inference

Prediction Problem

Variables s

X Y

X]'X

—
Variables extremely correlated
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Limitations of the Conditional Inference

x! = x2
Prediction Problem Given # is not important
Variables [ |
X — Yy ||
n ] = —
2 —
g] — 2 1
g (- X X
n |
| Given # is not important
x'x?
—
Variables extremely correlated
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Limitations of the Conditional Inference

1 2
Mutual X ™ X
cancellation |
Prediction Problem Given # is not important
Variables [ |
X — Yy ||
n ] = —
2 —
g] — 2 1
g (- X X
n |
| Given # is not important
x1x?
—
Variables extremely correlated
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Limitations of the Conditional Inference

Mutual
cancellation

Prediction Problem

Variables

Samples

|
|
[ |
|
|
|
X

Variables extremely correlated
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Limitations of the Conditional Inference

Mutual x! x? =
cancellation
. . . . Need to consider
Prediction Problem Given # is not important them jointly
Variables
> _x y
3
5 2 1 -
g X X
n
Given # is not important
X X’
——
-

Variables extremely correlated
@ Grouped interpretations might be interesting for high-dimensional
settings with hundreds or thousands of features (example in

Neuroimaging)
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Block-based Conditional Permutation Importance (BCPI)!

Importance Block —> p-values

YVY

| Z > Learner Block y

@ Learner Block: Performing inference on the data
@ Importance Block: Sampling the variable/group of interest

@ Any Scikit-learn compatible learners can be used

!Ahmad Chamma, Bertrand Thirion, and Denis A. Engemann (2024). “Variable
Importance in High-Dimensional Settings Requires Grouping”. In: Proceedings of the
38th Conference of the Association for the Advancement of Artificial Intelligence
(AAAI), Vancouver, Canada. DOL: 10.48550/arXiv.2312. £0858;
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Stacking approach

@ Enhancing predictions by stacking multiple prediction models
(Wolpert, Neural Networks, 1992)

Cross Fitting

Y

—ﬁ Base Classifier 1 }—

o S

—ﬁ Base Classifier n }—
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Stacking approach

@ Enhancing predictions by stacking multiple prediction models
(Wolpert, Neural Networks, 1992)

e Combine different input domains and groups of variables (Rahim
et al., Springer, 2015)

Cross Fitting

—>| Group 1 H Base Classifier ]—

Suppelrg

—)l Group n H Base Classifier ]—
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Stacking approach

@ Enhancing predictions by stacking multiple prediction models
(Wolpert, Neural Networks, 1992)

e Combine different input domains and groups of variables (Rahim
et al., Springer, 2015)

o Existing external solution = Making it an internal solution
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Internal Stacking - Learner Block

G: Original group, G’: Linear projected group

DNN(default)
Stacking

Learner Block

@ For a DNN learner = Expanding the architecture
@ Using sub-linear layers per group followed by a stacking

@ Flexible number of output neurons
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Results on Simulated Data - Group Variable Importance

Group Stacking
A O No Stacking O Stacking B
AUC score AUC score
BCPI-DNN BPI-DNN BCPI-RF Marginal GOPFI GPFI
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Results on Simulated Data - Group Variable Importance

Group Stacking
A O No Stacking © Stacking
AUC score
BCPI-DNN BPI-DNN BCPI-RF Marginal
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Results on Simulated Data - Group Variable Importance

Group Stacking
A ©O No Stacking O Stacking B
AUC score AUC score
BCPI-DNN BPI-DNN BCPI-RF Marginal GOPFI GPFI
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Impact of Internal Stacking?

Group Stacking

® No Stacking AUC score Type-I error Power Time (seconds)
@ Stacking '
No Stacking ) ®)
Stacking o o o}

o4 06 o8 10 00 04 08 00 04 08 1000 3,000 7,000
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Impact of Internal Stacking?

Group Stacking
Type-l error Power Time (seconds)

@ No Stacking AUC score
® Stacking
No Stacking
Stacking

1,000 3,000 7,000

o ----

of--
o

I I
04 0.6 0.8 1.0

e Applying Stacking or Non Stacking approaches achieve the same
performance (controlling Type-I error)
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Impact of Internal Stacking?

Group Stacking

:gfa fk‘;zking AUC score . Type-l error Power Time (seconds)
No Stacking le) : o
i
Stacking o G:D o
04 06 08 10 bl.o " 04 08 00 04 08 |_1.000 3000 7.000

@ Applying Stacking or Non Stacking approaches achieve the same

performance (controlling Type-| error)

@ The main benefit is an important decrease in time cost
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Results on Real Dataset - UK Biobank

Data Source
= Social
= Brain

Degree of Significance
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Performance after VI-based Variable Selection
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o Left Panel: Degree of significance of pre-defined Brain vs
socio-demographic groups
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Results on Real Dataset - UK Biobank

Degree of Significance Performance after VI-based Variable Selection
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o Left Panel: Degree of significance of pre-defined Brain vs
socio-demographic groups

@ Right Panel: Performance check after retrieving the non-important
groups (having p-value > 0.001)
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Take-home messages

@ BCPI provides an indicator of significance under statistical guarantees
with a reduced computation time.

@ BCPI controls type-| error in high-correlation and high-dimensional
settings.

@ Internal stacking maintains the same performance while providing
important time savings.

@ Deep-learning models are the most accurate for significant variables’
assessment.
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Thank You for your attention!
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