

Enhancing Variable Importance Interpretation in Machine Learning with Conditional Permutation Importance

Ahmad CHAMMA¹

¹PhD graduate from Paris-Saclay University/Inria-Saclay

PSI Talk | June 17, 2024

Example I: Population Imaging with UK Biobank

 In multimodal clinical research, prospective epidemiology Heterogeneous sources of data, UK Biobank dataset

Figure: Taken from (Bycroft et al., Nature, 2018)

Ahmad CHAMMA

Variable Importance/ Feature Selection

Example I: Population Imaging with UK Biobank

 In multimodal clinical research, prospective epidemiology Heterogeneous sources of data, UK Biobank dataset

Figure: Taken from (Bycroft et al., Nature, 2018)

Ahmad CHAMMA

Variable Importance/ Feature Selection

Example I: Population Imaging with UK Biobank

• Given socio-demographics data, brain variables provide additional information on top of it for predicting cognitive tests?

• Given a genomic dataset and kidney stone disease diagnosis:

A B A A B A

3

Example II: Genetic Data

- Given a genomic dataset and kidney stone disease diagnosis:
 - What genes add information w.r.t the outcome given all others?

Taken from (Howles et al., Nature, 2019)

Example II: Genetic Data

- Given a genomic dataset and kidney stone disease diagnosis:
 - What genes add information w.r.t the outcome given all others?

Taken from (Howles et al., Nature, 2019)

Warning!

• Genes are highly correlated locally (High-correlation)

Assessing the added information of specific genes is crucial!

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

Example II: Genetic Data

Taken from (Howles et al., Nature, 2019)

Warning!

- Genes are highly correlated locally (High-correlation)
- Assessing the added information of specific genes is crucial!

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Types of Interpretations: Local vs Global

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Types of Interpretations: Local vs Global

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Types of Interpretations: Model- Specific vs Agnostic

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Types of Interpretations: Model- Specific vs Agnostic

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Statistical Guarantees for Variable Importance

Variable Importance [Hooker et al. 2018; Zien et al. 2009]

Estimating the influence of a given input feature to the prediction made by a model

Statistical guarantees are important!

- Find as many relevant variables while controlling false positives (Candes et al., Journal of the Royal Statistical Society, 2017)
- I) Essential for scientific discovery
- II) Control the risk in study design
- E.g. in genetic analysis, the cost of examining a falsely selected gene may be intolerable (Zhao et al., AAAI, 2022)

Scientific Question/Challenge

Current state-of-the-art

 Current inference tools in deep learning merely perform sensitivity analysis

- Interpretation is unclear (Adebayo et al. 2018)
- No statistical control

• Assess the impact of the removal of a given variable \implies Noisy &

- Find effectively the relevant predictors for the prediction of a
 - Statistical error control \implies Controlling the rate of true non-relevant

5/17

< 3 >

Scientific Question/Challenge

Current state-of-the-art

 Current inference tools in deep learning merely perform sensitivity analysis

- Interpretation is unclear (Adebayo et al. 2018)
- No statistical control

• Assess the impact of the removal of a given variable \implies Noisy & Too expensive

- Find effectively the relevant predictors for the prediction of a
 - Statistical error control \implies Controlling the rate of true non-relevant

< 3 >

Scientific Question/Challenge

Current *state-of-the-art*

• Current inference tools in deep learning merely perform sensitivity analysis

- Interpretation is unclear (Adebayo et al. 2018)
- No statistical control

• Assess the impact of the removal of a given variable \implies Noisy & Too expensive

Roadmap!

- Find effectively the relevant predictors for the prediction of a biomedical outcome
 - Statistical error control \implies Controlling the rate of true non-relevant variables detected as relevant
 - High-correlation settings
 - High-dimensional settings

According to (Breiman, Machine Learning, 2001)

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

According to (Breiman, Machine Learning, 2001)

PSI Talk | June 17, 2024

According to (Breiman, Machine Learning, 2001)

Variable Importance/ Feature Selection

According to (Breiman, Machine Learning, 2001)

After B permutations, obtain statistical evidence on the significance of variable j

Problem: Does not control errors if variables are correlated

Ahmad CHAMMA

Variable Importance/ Feature Selection

According to (Breiman, Machine Learning, 2001)

After B permutations, obtain statistical evidence on the significance of variable j

Problem: Does not control errors if variables are correlated

Ahmad CHAMMA

Variable Importance/ Feature Selection

- A TE N - A TE N PSI Talk | June 17, 2024

6/17

Proposed Solution - Sampling the variable of interest¹

• Let
$$\epsilon^{j} = x^{j} - \hat{x}^{j}$$
 with $\hat{x}^{j} = \mathbb{E}(x^{j}|\mathbf{X}^{-j})$

Ahmad CHAMMA

Variable Importance/ Feature Selection

Proposed Solution - Sampling the variable of interest¹

• Let
$$e^{j} = x^{j} - \hat{x}^{j}$$
 with $\hat{x}^{j} = \mathbb{E}(x^{j}|X^{-j})$

Samling $\mathbf{x}^{\mathbf{j}}$ from the conditional distribution

$$\mathbf{\tilde{x}^{j}} = \mathbf{\hat{x}^{j}} + \{\epsilon^{j}\}^{perm}$$

Why? The dependency between the variable of interest and the remaining variables is preserved.

¹Ahmad Chamma, Denis A. Engemann, and Bertrand Thirion (2023). "Statistically Valid Variable Importance Assessment through Conditional Permutations". In: Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA. DOI: 10.48550/arXiv.2309.07593.

Ahmad CHAMMA

Proposed Solution - Novel Implementation¹

Ahmad CHAMMA

Variable Importance/ Feature Selection

Proposed Solution - Sampling Phase

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

7 / 17

э

New Benchmark for State-of-the-art Methods

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

Results on Simulated Data - CPI-DNN

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

Results on Simulated Data - Type-I error/AUC score

- AUC score: Correct significant variables ordering
- *Type-I error*: Rate of true non-significant variables detected as relevant

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

Results on Simulated Data - Scenarios

PSI Talk | June 17, 2024

Results on Simulated Data

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

-

Results on Simulated Data

PSI Talk | June 17, 2024

< E

Variables extremely correlated

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

э

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

- A - E - N

2024 9 / 17

• Grouped interpretations might be interesting for high-dimensional settings with hundreds or thousands of features (example in Neuroimaging)

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

Block-based Conditional Permutation Importance (BCPI)¹

- Learner Block: Performing inference on the data
- Importance Block: Sampling the variable/group of interest
- Any Scikit-learn compatible learners can be used

Ahmad CHAMMA

Variable Importance/ Feature Selection

Stacking approach

• Enhancing predictions by stacking multiple prediction models (Wolpert, Neural Networks, 1992)

Stacking approach

- Enhancing predictions by stacking multiple prediction models (Wolpert, Neural Networks, 1992)
- Combine different input domains and groups of variables (Rahim et al., Springer, 2015)

- Enhancing predictions by stacking multiple prediction models (Wolpert, Neural Networks, 1992)
- Combine different input domains and groups of variables (Rahim et al., Springer, 2015)
- Existing external solution \implies Making it an <u>internal</u> solution

Internal Stacking - Learner Block

 $\boldsymbol{G}:$ Original group, $\boldsymbol{G}':$ Linear projected group

- For a DNN learner \implies Expanding the architecture
- Using sub-linear layers per group followed by a stacking
- Flexible number of output neurons

Results on Simulated Data - Group Variable Importance

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

Results on Simulated Data - Group Variable Importance

PSI Talk | June 17, 2024

Results on Simulated Data - Group Variable Importance

PSI Talk | June 17, 2024

Impact of Internal Stacking?

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

7, 2024 14 / 17

Impact of Internal Stacking?

• Applying *Stacking* or *Non Stacking* approaches achieve the same performance (controlling Type-I error)

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

Impact of Internal Stacking?

- Applying *Stacking* or *Non Stacking* approaches achieve the same performance (controlling Type-I error)
- The main benefit is an important decrease in time cost

PSI Talk | June 17, 2024

Results on Real Dataset - UK Biobank

- Left Panel: Degree of significance of pre-defined Brain vs socio-demographic groups
- Right Panel: <u>Performance check</u> after retrieving the non-important groups (having p-value > 0.001)

15 / 17

< 3 >

Results on Real Dataset - UK Biobank

- Left Panel: Degree of significance of pre-defined Brain vs socio-demographic groups
- Right Panel: <u>Performance check</u> after retrieving the non-important groups (having p-value > 0.001)

- *BCPI* provides an indicator of significance under statistical guarantees with a reduced computation time.
- *BCPI* controls type-I error in high-correlation and high-dimensional settings.
- *Internal* stacking maintains the same performance while providing important time savings.
- Deep-learning models are the most accurate for significant variables' assessment.

Thank You for your attention!

Ahmad CHAMMA

Variable Importance/ Feature Selection

PSI Talk | June 17, 2024

(B)

э