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Antidepressant Trial

The following data come from a three-arm multicentre RCT on the
treatment of depression (see [1],[2]); I have adjusted the mean for
Treatment C.

The outcome is the Hamilton depression score, which takes values in
[0, 50].

In the original trial, 369 patients were randomised to receive one of
treatments A, B, C.

Data were collected at baseline, and weeks 1, 2, 3 and 4.

Here we consider treatments A and C, and baseline and visit 4 data.
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Data

Treatment A
Mean (SD) Hamilton Score

Pattern Baseline 4 weeks n
1 21.86 (3.79) 11.70 (6.65) 76 (63%)
2 22.13 (3.66) — 44 (37%)

Treatment C
Mean (SD) Hamilton Score

1 21.10 (4.27) 13.27 (7.34) 94 (73%)
2 22.46 (3.64) — 35 (27%)
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Estimands

Details of follow-up criteria for this trial are unavailable, but it is likely that
patients were followed up until they discontinued the treatment.

We will consider:
I A de jure estimand
I A de facto estimand (jump to reference)

In general, we wish to pre-specify a broad based population for our
estimand (i.e. incorporating a range of behaviours within the ‘class’). Then
results are
I more likely to be generalizable without additional assumptions;
I make good use of our data, and
I more likely to be robust in sensitivity analyses.
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Primary analysis

. regress v4 base treat

--------------------------------------------------------------

v4 | Coef. SE t P>|t| [95% Conf. Interval]

------+-------------------------------------------------------

base | 0.5820 0.126 4.61 0.000 0.3328 0.8312

treat | 2.012 1.030 1.95 0.052 -0.0213 4.047

cons | -1.023 2.862 -0.36 0.721 -6.674 4.628

--------------------------------------------------------------

Question: Under the null, how robust is our estimator to
I normality (questionable if the data represent a mix of behaviours)
I MAR when the data are non-normal
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Sensitivity analysis

There are two broad approaches to this:

1. Maintain our primary analysis estimation procedure, but vary the
assumptions about post-deviation behaviour, obtaining a valid point
estimate and corresponding SE in each case

— the primary analysis model may be incompatible—in some
aspects—with some of the sensitivity scenarios.

2. Explicitly model deviation, and post-deviation behaviour, in the
primary analysis, and vary the models & assumptions for the
sensitivity analyses

— each model will be compatible with its sensitivity scenario.
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Sensitivity analysis: J2R

Using approach (1) from the previous slide gives the following (using Stata
mimix program):

Assumptions Treatment estimate SE p-value
MAR 2.01 1.03 0.052

J2R (reference = A) 1.49 0.976 0.128
J2R (reference = C) 1.55 0.984 0.116

Note the SE from Rubin’s MI rules satisfies:

Vsens,partial ≈
Vprimary,partial

Vprimary,full
× Vsens,full ,

as it also does for the ‘∆’ method.
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Analysis of Covariance

A practically important, but sometimes overlooked, property of a t-test and
also the treatment test from the analysis of covariance, is that they have a
randomisation justification under the null when:

– patients are sampled randomly from a (super-)population, and

– sampled patients are randomly allocated to treatment

This is an asymptotic property [3], but means that under the null the size is
likely to be well preserved, even if the data are quite non-normal.

However, the power may be reduced; but this will likely be moderate for
moderate non-normality.
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Simulation example

Draw Xi ∼ N(0, 1), Ti ∼ Bin(π = 0.5, n = 1), i = 1, . . . , n.

Set β0 = 0, β1 = 0.5, β2 = 0 and draw

Yi = β0 + β1Xi + β2Ti + ei ,

with
1. n = 25, ei ∼ N(0, 0.75), and
2. n = 25, ei ∼ χ

2
1

3. n = 100, ei ∼ N(0, 0.75)

4. n = 100, ei ∼ χ
2
10

5. n = 100, ei ∼ χ
2
1

Fit a linear regression of Y on X and treatment and note whether the
p-value is < 0.05.

Repeat 5000 times.
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Results for β2

Scenario n = Empirical size

Normal 25 0.050
χ2

1 25 0.041

Normal 100 0.053
χ2

10 100 0.051
χ2

1 100 0.052

With n = 100 results are very robust to skewness.
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Now with missing data

We simulate the following scenarios, with β0 = 0, β1 = 1 and β2 = 0. Let
Ri = 1 if the outcome for patient i is observed.

Sample Resid Selection mechanism mean Size
size dist logit{Pr(Ri = 1)} = nobs

n = 100 normal −3 + 2Ti 84 0.052
n = 100 χ2

10 −3 + 2Ti 84 0.053
n = 100 χ2

10 −3 + 2Ti + Xi 78 0.049
n = 100 χ2

10 −3 + 2Ti + 4Xi 67 0.048

n = 100 χ2
1 −3 + 2Ti + 4Xi 67 0.049

n = 50 χ2
1 −3 + 2Ti + 4Xi 34 0.044

n = 100 χ2
10 −3 + 2Ti + Xi + 0.1Yi 66 0.071

Type 1 error preserved under MAR.
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Selection model

Now consider the selection model:

Yi = β0 + β1Xi + β2Ti + ei , ei ∼ χ
2
10

logit{Pr(Ri = 1)} = α0 + α1xi + α2Ti + α3Yi

Simulate n = 100 observations as above, and make them MAR with
mechanism

logit{Pr(Ri = 1)} = −3 + 2Ti + Xi .

Fit the selection model above and look at the estimate and SE for β2.

J. R. Carpenter Estimands, Randomisation and Sensitivity Analysis ESME 2015 14/21



Depression trial Randomisation justification for primary analysis Modelling the selection process Example revisited Discussion References

Results

Model Sample Resid Selection mechanism mean Size
size dist logit{Pr(Ri = 1)} = nobs

ANCOVA n = 100 χ2
10 −3 + 2Ti + Xi 78 0.049

Sel Mod n = 100 χ2
10 −3 + 2Ti + Xi 78 0.378

The average value of β̂2,sel mod is −1.958.
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Residuals
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Analysis

Fit the same selection model to the depression data:

Assumptions Treatment estimate SE p-value

MAR 2.01 1.03 0.052

J2R (reference = A) 1.49 0.976 0.128
J2R (reference = C) 1.55 0.984 0.116

Selection model 3.47 1.37 ∼ 0.011

α̂3 = 1.16, 95% HPD (0.45, 2.27).
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Explanation
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— Little dependence of dropout on baseline and treatment.
— Model makes selection depend on outcome: missing values put in the tail
— Results are very sensitive to the distribution tail length.
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Analysis

Fit the same selection model to the depression data:

Assumptions Treatment estimate SE p-value

MAR 2.01 1.03 0.052

J2R (reference = A) 1.49 0.976 0.128
J2R (reference = C) 1.55 0.984 0.116

Selection model 3.47 1.37 ∼ 0.011
(no constraint)
Selection model 1.44 1.13 ∼ 0.202
(constraint)

α̂3,no constraint = 1.16, 95% HPD (0.45, 2.27).
α̂3,constraint = −0.15, 95% HPD (−0.3,−0.02).

Both models have converged; they put missing values at opposite extremes.
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Discussion

I In trials, ANCOVA inference has a randomisation justification—as well
as a central limit theorem justification—when the data are
non-normal.

I This holds up well under MAR.
I Inference for our primary estimand should have this protection, where

possible.
I Sensitivity analysis then explores the robustness of inference from the

primary analysis model as the assumptions vary.
I If our primary analysis model includes a selection model (or uses

inverse probability weighting), results can be very sensitive to
distributional/modelling assumptions.

I If we wish to do this, we should be aware that the protection of
randomisation inference no longer holds, and take care!
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