Estimands, Randomisation and Sensitivity Analysis

James Carpenter

London School of Hygiene and Tropical Medicine, London, UK, & MRC Clinical Trials Unit, London, UK

james.carpenter@lshtm.ac.uk

European Statistical Meeting on Estimands, 28th September 2015

Acknowledgements

Suzie Cro (LSHTM & MRC Clinical Trials Unit) Mike Kenward (LSHTM) James Roger (LSHTM, formerly GSK)

Outline

- Example: depression trial
 - Data
 - Estimands
 - Primary analysis
 - Sensitivity analysis
 - Jump to Reference
- Randomisation justification for primary analysis:
 - In theory
 - Performance in practice
- Modelling the selection process
 - In theory
 - Performance in practice
- Example revisited
- Discussion

Antidepressant Trial

The following data come from a three-arm multicentre RCT on the treatment of depression (see [1],[2]); I have adjusted the mean for Treatment C.

The outcome is the Hamilton depression score, which takes values in [0, 50].

In the original trial, 369 patients were randomised to receive one of treatments A, B, C.

Data were collected at baseline, and weeks 1, 2, 3 and 4.

Here we consider treatments A and C, and baseline and visit 4 data.

Data

Treatmer	nt A			
	Mean (SD) Ha			
Pattern	Baseline	4 weeks	n	
1	21.86 (3.79)	11.70 (6.65)	76 (63%)	
2	22.13 (3.66)	—	44 (37%)	
Treatment C				
	Mean (SD) Hamilton Score			
1	21.10 (4.27)	13.27 (7.34)	94 (73%)	
2	22.46 (3.64)	—	35 (27%)	

Estimands

Details of follow-up criteria for this trial are unavailable, but it is likely that patients were followed up until they discontinued the treatment.

We will consider:

- A de jure estimand
- A de facto estimand (jump to reference)

In general, we wish to pre-specify a broad based population for our estimand (i.e. incorporating a range of behaviours within the 'class'). Then results are

- more likely to be generalizable without additional assumptions;
- make good use of our data, and
- more likely to be robust in sensitivity analyses.

Primary analysis

. regress v4 base treat

v4	Coef.	SE	t	P> t	[95% Conf.	. Interval]
base	0.5820	0.126	4.61	0.000	0.3328	0.8312
treat	2.012	1.030	1.95	0.052	-0.0213	4.047
cons	-1.023	2.862	-0.36	0.721	-6.674	4.628

Question: Under the null, how robust is our estimator to

- normality (questionable if the data represent a mix of behaviours)
- MAR when the data are non-normal

Sensitivity analysis

There are two broad approaches to this:

- 1. Maintain our primary analysis estimation procedure, but vary the assumptions about post-deviation behaviour, obtaining a valid point estimate and corresponding SE in each case
 - the primary analysis model may be incompatible—in some aspects—with some of the sensitivity scenarios.
- 2. Explicitly model deviation, and post-deviation behaviour, in the primary analysis, and vary the models & assumptions for the sensitivity analyses
 - each model will be compatible with its sensitivity scenario.

Sensitivity analysis: J2R

Using approach (1) from the previous slide gives the following (using Stata mimix program):

Assumptions	Treatment estimate 2.01	SE	p-value
MAR		1.03	0.052
J2R (reference = A)	1.49	0.976	0.128
J2R (reference = C)	1.55	0.984	0.116

Note the SE from Rubin's MI rules satisfies:

$$V_{sens, partial} \approx \frac{V_{primary, partial}}{V_{primary, full}} \times V_{sens, full},$$

as it also does for the ' Δ ' method.

J. R. Carpenter

Analysis of Covariance

A practically important, but sometimes overlooked, property of a t-test and also the treatment test from the analysis of covariance, is that they have a randomisation justification under the null when:

- patients are sampled randomly from a (super-)population, and
- sampled patients are randomly allocated to treatment

This is an asymptotic property [3], but means that under the null the size is likely to be well preserved, even if the data are quite non-normal.

However, the power may be reduced; but this will likely be moderate for moderate non-normality.

Simulation example

Draw
$$X_i \sim N(0, 1), T_i \sim Bin(\pi = 0.5, n = 1), i = 1, ..., n.$$

Set $\beta_0 = 0, \beta_1 = 0.5, \beta_2 = 0$ and draw

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 T_i + e_i,$$

with

1. n = 25, $e_i \sim N(0, 0.75)$, and 2. n = 25, $e_i \sim \chi_1^2$ 3. n = 100, $e_i \sim N(0, 0.75)$ 4. n = 100, $e_i \sim \chi_{10}^2$ 5. n = 100, $e_i \sim \chi_1^2$

Fit a linear regression of Y on X and treatment and note whether the p-value is < 0.05.

Repeat 5000 times.

J. R. Carpenter

Results for β_2

Scenario	n =	Empirical size
Normal χ^2_1	25 25	0.050 0.041
Normal χ^2_{10} χ^2_1	100 100 100	0.053 0.051 0.052

With n = 100 results are very robust to skewness.

Now with missing data

We simulate the following scenarios, with $\beta_0 = 0$, $\beta_1 = 1$ and $\beta_2 = 0$. Let $R_i = 1$ if the outcome for patient *i* is observed.

Sample	Resid	Selection mechanism	mean	Size
size	dist	$logit{Pr(R_i = 1)} =$	n _{obs}	
<i>n</i> = 100	normal	$-3 + 2T_i$	84	0.052
<i>n</i> = 100	χ^{2}_{10}	$-3 + 2T_i$	84	0.053
<i>n</i> = 100	$\chi^{2^{\circ}}_{10}$	$-3 + 2T_i + X_i$	78	0.049
<i>n</i> = 100	$\chi^{2^{\circ}}_{10}$	$-3 + 2T_i + 4X_i$	67	0.048
n = 100 n = 50	χ^2_1	$-3 + 2T_i + 4X_i$ $-3 + 2T_i + 4X_i$	67 34	0.049
	Λ1 2			0.044
<i>n</i> = 100	χ_{10}^2	$-3 + 2I_i + X_i + 0.1Y_i$	66	0.071

Type 1 error preserved under MAR.

Selection model

Now consider the selection model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 T_i + e_i, \quad e_i \sim \chi^2_{10}$$

logit{Pr($R_i = 1$)} = $\alpha_0 + \alpha_1 x_i + \alpha_2 T_i + \alpha_3 Y_i$

Simulate n = 100 observations as above, and make them MAR with mechanism

$$logit{Pr(R_i = 1)} = -3 + 2T_i + X_i.$$

Fit the selection model above and look at the estimate and SE for β_2 .

Results

Model	Sample size	Resid dist	Selection mechanism $logit{Pr(R_i = 1)} =$	mean n _{obs}	Size
ANCOVA	<i>n</i> = 100	χ^{2}_{10}	$-3 + 2T_i + X_i$	78	0.049
Sel Mod	<i>n</i> = 100	χ^{2}_{10}	$-3 + 2T_i + X_i$	78	0.378

The average value of $\hat{\beta}_{2,sel \mod}$ is -1.958.

Residuals

Normal Q–Q Plot

Analysis

Fit the same selection model to the depression data:

Assumptions	Treatment estimate	SE	p-value
MAR	2.01	1.03	0.052
J2R (reference = A) J2R (reference = C)	1.49 1.55	0.976 0.984	0.128 0.116
Selection model	3.47	1.37	~ 0.011

 $\hat{a}_3 = 1.16, 95\%$ HPD (0.45, 2.27).

Explanation

- Little dependence of dropout on baseline and treatment.
- Model makes selection depend on outcome: missing values put in the tail
- Results are very sensitive to the distribution tail length.

Analysis

Fit the same selection model to the depression data:

Assumptions	Treatment estimate	SE	p-value
MAR	2.01	1.03	0.052
J2R (reference = A) J2R (reference = C)	1.49 1.55	0.976 0.984	0.128 0.116
Selection model	3.47	1.37	~ 0.011
Selection model (constraint)	1.44	1.13	~ 0.202

 $\hat{\alpha}_{3,no\ constraint} = 1.16, 95\%$ HPD (0.45, 2.27). $\hat{\alpha}_{3,constraint} = -0.15, 95\%$ HPD (-0.3, -0.02).

Both models have converged; they put missing values at opposite extremes.

Discussion

- In trials, ANCOVA inference has a randomisation justification—as well as a central limit theorem justification—when the data are non-normal.
- This holds up well under MAR.
- Inference for our primary estimand should have this protection, where possible.
- Sensitivity analysis then explores the robustness of inference from the primary analysis model as the assumptions vary.
- If our primary analysis model includes a selection model (or uses inverse probability weighting), results can be very sensitive to distributional/modelling assumptions.
- If we wish to do this, we should be aware that the protection of randomisation inference no longer holds, and take care!

References

- P J Diggle and M G Kenward. Informative dropout in longitudinal data analysis (with discussion). *Journal of the Royal Statistical Society Series C (applied statistics)*, 43:49–94, 1994.
- [2] A Heyting, J G A Essers, and J T B M Tolboom. A practical application of the patel-kenward analysis of covariance to data from an anti-depressant trial with drop-outs. *Statist. Appl.*, 2:295–307, 1990.
- [3] O Kempthorne. *The Designs and Analysis of Experiments*. New York, Wiley, 1956.