A Bayesian Phase I/II Design for Oncology Clinical Trials of Combining Biological Agents

Ying Yuan

Department of Biostatistics, MD Anderson Cancer Center

March 12, 2014

Outline

- Introduction
- Probability model
- Dose finding algorithm
- Simulation study
- Conclusion

Biological agents

- The paradigm of oncology drug development is expanding from traditional cytotoxic agents to novel biological (or molecularly targeted) agents.
- Examples of biological agents:
 - Biospecimens targeting a specific tumor pathway.
 - Gene products aiming for DNA repair.
 - Immunotherapies stimulating the immune system to attack a tumor.

Biological agents versus cytotoxic agents

- Cytotoxic agents
 - Toxicity and efficacy are assumed to monotonically increase with dose.
 - The goal is to find the maximum tolerated dose (MTD).
- Biological agents
 - The toxicity is usually tolerable within the therapeutic dose range and may plateau at higher dose levels.
 - The dose-efficacy curves often follow a non-monotonic pattern.
 - The goal is to find the optimal biological dose (OBD), defined as the dose yielding the most desirable treatment effect.

Drug-combination Trials

- Treating patients with a combination of agents is becoming common in cancer clinical trials.
- Most existing drug-combination trial designs concern cytotoxic agents (e.g., Thall et al., 2003; Wang and Ivanova, 2005; Yin and Yuan, 2009), thus are not applicable to the trials combining biological agents.
- A phase I/II trial design is imperative for biological agent combination trials because of non-monotonic dose-efficacy and -toxicity relationship.

Motivating trial

- A lymphoma trial combining two novel biological agents to target two components in the PI3K/AKT/mTOR signaling pathway.
 - Agent A is a PI3K kinase inhibitor.
 - Agent B inhibits mTOR kinase downstream in the pathway.
- 4 doses of agent A combined with 4 doses of agent B.
- Goal: to find the biologically optimal dose combination (BODC), defined as the dose combination with the highest efficacy and tolerable toxicity.

Motivating trial

Targeting PI3K/AKT/mTOR signaling Pathways in Lymphoma

Proposed design

We propose a phase I/II trial design to identify the BODC.

- A change-line model is used to reflect the property that the dose-toxicity surface of the combinational agents may plateau at higher dose levels.
- A logistic model with quadratic terms is used to accommodate the possible non-monotonic pattern for the dose-efficacy relationship.
- We devise a novel adaptive dose-finding algorithm to encourage sufficient exploration of the two-dimensional dose space.

Notation

- Consider a trial of combinational biological agents
 - J doses of agent A: $a_1 < a_2 < \cdots < a_J$
 - K doses of agent B: $b_1 < b_2 < \cdots < b_K$
 - (a_i, b_k) : combination of dose a_i and dose b_k
 - p_{jk} and q_{jk} denote the toxicity and efficacy probabilities of dose combination (a_j, b_k)
- Goal: identify the BODC in the $J \times K$ dose matrix.

Change-line model for toxicity

We model toxicity probability p_{jk} using a change-line model:

$$logit(p_{jk}) = (\beta_0 + \beta_1 a_j + \beta_2 b_k) I(\beta_0 + \beta_1 a_j + \beta_2 b_k \le \omega) + \omega I(\beta_0 + \beta_1 a_j + \beta_2 b_k > \omega)$$

- $I(\cdot)$: indicator function
- $\beta_1 > 0$ and $\beta_2 > 0$ such that p_{jk} initially increases with the doses of A and B
- When it reaches a plateau, the toxicity probability: $e^{\omega}/(1+e^{\omega})$.
- We did not include an interactive effect for the two agents because the estimation of that needs large sample

Figure : Surface of the toxicity probabilities

Logistic model for efficacy

Assume the efficacy probability q_{jk} follows a logistic model

$$\operatorname{logit}(q_{jk}) = \gamma_0 + \gamma_1 a_j + \gamma_2 b_k + \gamma_3 a_j^2 + \gamma_4 b_k^2$$

- The quadratic terms render the model adequate flexibility to capture the non-monotonic pattern.
- We model the marginal distributions of toxicity and efficacy.
- ullet Joint modeling is possible, but small sample size o cannot reliably estimate the correlation parameter.

Likelihood

Suppose that at a certain stage of the trial

- n_{jk} patients are treated at the paired dose (a_j, b_k)
- x_{jk} and y_{jk} patients have experienced toxicity and efficacy, respectively.
- The marginal likelihood for the toxicity data x is

$$L(\mathbf{x}|\omega, \boldsymbol{eta}) \propto \prod_{i=1}^J \prod_{k=1}^K \rho_{jk}^{x_{jk}} (1-\rho_{jk})^{n_{jk}-x_{jk}};$$

for the efficacy data y is

$$L(\mathbf{y}|oldsymbol{\gamma}) \propto \prod_{j=1}^J \prod_{k=1}^K q_{jk}^{y_{jk}} (1-q_{jk})^{n_{jk}-y_{jk}}.$$

• The posterior distribution is

$$f(\omega, \beta, \gamma | \mathbf{x}, \mathbf{y}) \propto L(\mathbf{x} | \omega, \beta) L(\mathbf{y} | \gamma) f(\omega) f(\beta) f(\gamma)$$

where $f(\omega)$, $f(\beta)$, and $f(\gamma)$ denote the prior distributions for ω , β , and γ , respectively.

Vague priors are used:

$$\gamma_0 \sim \mathsf{Cauchy}(0,10), \quad \gamma_1, \cdots, \gamma_4 \sim \mathsf{Cauchy}(0, 2.5). \quad \beta_0 \sim \mathsf{Cauchy}(0, 10), \quad \beta_1, \beta_2 \sim \mathsf{Gamma}(0.5, 0.5) \quad \omega \sim \mathsf{N}(0,4)$$

Trial design

Our design is conducted in two stages:

- Stage I (run in): We escalate doses along the diagonal to explore the dose-combination space quickly and collect some preliminary data.
- Stage II (dose finding): Based on observed efficacy and toxicity data, we continuously update the posterior estimates of toxicity and posterior means of efficacy and assign patients to the most appropriate dose.

Def: dose (a_j, b_k) is deemed safe if $\Pr(p_{jk} < \phi | \mathcal{D}) > \delta$; otherwise toxic.

• ϕ is the target toxicity upper limit and δ is a prespecified safety cutoff.

Stage I: Run-in period

The trial starts with the treatment of the first cohort of patients at the lowest dose (a_1, b_1) .

- I1 If current dose is safe, escalate the dose along the diagonal. If (a_1, b_1) is deemed toxic, terminate the trial.
- 12 Stage I completes when either current dose is deemed toxic or the highest dose combination is reached. Stage II starts.

g-degree admissible dose set

Assume that the current dose combination is (a_j, b_k) ,

- Define g-degree neighbors of (a_j, b_k) , denoted by \mathcal{N}_g , as dose combinations $\{(a_{j'}, b_{k'})\}$ whose dose levels are different from (a_j, b_k) no more than g levels, i.e., $\mathcal{N}_g = \{(a_{j'}, b_{k'}) : |j' j| \le g \text{ and } |k' k| \le g\}.$
- Further define a g-degree admissible dose set \mathcal{A}_g , which is a subset of the g-degree neighbors \mathcal{N}_g satisfying the pre-specified safety requirement $Pr(p_{j'k'} < \phi_T | \mathcal{D}) > \delta$.

Stage II: Systematic dose finding

- II1 Based on the observed data, identify \mathcal{A}_{g^*} as the nonempty set of safe neighbors of (a_j, b_k) with minimum degree g^* . If \mathcal{A}_{g^*} does not exist (i.e., all experimental doses are deemed toxic), terminate the trial.
- II2 Among the doses in \mathcal{A}_{g^*} , identify the dose (a_{j^*}, b_{k^*}) with the highest posterior mean of efficacy $\hat{q}_{j^*k^*}$.

First-degree neighbors of current dose combination, \mathcal{N}_1

- Current dose
- First-degree neighbors

First-degree admissible dose set of current dose combination, A_1

- Current dose
- Admissible dose
- Non-admissible dose

The dose (a_{j^*}, b_{k^*}) with the highest posterior mean of efficacy $\hat{q}_{j^*k^*}$

- Current dose
- Admissible dose
- Non-admissible dose

- The commonly used algorithm is to assign the next cohort of patients to (a_{j^*}, b_{k^*}) .
- Problem: this greedy algorithm is easily trapped in locally optimal doses due to
 - small sample size
 - model misspecification
- Solution: a novel dose-finding algorithm to adaptively encourage the exploration of untried doses

- Current dose
- Admissible dose
- Non-admissible dose

- Current dose
- Admissible dose
- Non-admissible dose

- Current dose
- Admissible dose
- Non-admissible dose

- Current dose
- Admissible dose
- Non-admissible dose

Stage II: Systematic dose finding

- II3 If $n_{j^*k^*}=0$ or $n_{rs}\neq 0$ for all $(a_r,b_s)\in \mathcal{A}_{g^*}$, treat the next cohort at dose (a_{j^*},b_{k^*}) .
 - Otherwise, $\begin{cases} &\text{If } \hat{q}_{j^*k^*} > \left(\frac{N-n}{N}\right)^{\alpha} &\text{treat the next cohort at } (a_{j^*},b_{k^*}),\\ &\text{If } \hat{q}_{j^*k^*} \leq \left(\frac{N-n}{N}\right)^{\alpha} &\text{remove dose } (a_{j^*},b_{k^*}) \text{ from } \mathcal{A}_{g^*}\\ &\text{and go to step II2}. \end{cases}$
 - N: prespecified maximum sample size
 - $n = \sum_{i,k} n_{jk}$: the total number of patients treated in the trial
 - \bullet α is a known tuning parameter.
- II4 Repeat steps II2-4 until exhaustion of the sample size. Select as the BODC the dose combination with the highest \hat{q}_{jk} among all safe doses.

Simulation setup

- Consider 4 dose levels for each agent:
 - Dose levels of A and B are (0.075, 0.15, 0.225, 0.3) and (0.08, 0.16, 0.24, 0.32), respectively.
- The maximum sample size was 15 cohorts of size 3.
- Set the target toxicity upper limit ϕ = 0.3 and the safety cutoff δ = 0.4.
- Set the tuning parameter $\alpha = 2$.

Simulation setup

- We compared the proposed design with a greedy design that is otherwise identical except that it uses the greedy dose-assignment rule (i.e., always assign the next cohort to the dose with the highest estimate of efficacy).
- 2000 simulated trials under each scenario.

Table: Scenario 1

	Agent A										
Agent	Tox	cicity p	robab	ility		Efficacy probability					
В	1	2	3	4	-	1	2	3	4		
4	.25	.25	.25	.25		.42	.60	.38	.32		
3	.15	.25	.25	.25		.19	.44	.20	.18		
2	.10	.25	.25	.25		.12	.29	.15	.10		
1	.05	.10	.15	.25		.05	.22	.10	.08		

Table: The selection percentage and the percentage of patients treated at each dose combination (shown as the subscripts) for scenario 1.

	Agent A											
			Greedy	design								
В	1	2	3	4	_	1	2	3	4			
4	23.8 _{14.1}	31.0 _{15.9}	10.89.4	8.9 _{8.5}		18.2 _{9.5}	21.5 _{10.0}	7.8 _{5.3}	21.8 _{26.5}			
3	$3.5_{3.9}$	$5.5_{6.0}$	$1.2_{6.9}$	$1.1_{4.6}$		$4.5_{3.0}$	$4.3_{3.0}$	$1.1_{9.5}$	$2.2_{3.2}$			
2	$0.9_{2.3}$	$2.7_{8.1}$	$0.8_{3.7}$	$0.5_{2.3}$		$1.2_{1.6}$	$4.2_{11.4}$	$0.9_{1.6}$	$0.6_{1.9}$			
_1	0.7 _{7.6}	$2.1_{2.8}$	$1.0_{2.1}$	$0.9_{1.8}$		$0.5_{8.4}$	2.2 _{1.9}	1.4 _{2.1}	$2.1_{1.2}$			

Table: Scenario 2

:		Agent A										
Agent	Tox	icity p	robab	_	Efficacy probability							
В	1	2	3	4		1	2	3	4			
4	.25	.25	.25	.25		.10	.29	.29	.42			
3	.15	.25	.25	.25		.25	.35	.43	.60			
2	.10	.25	.25	.25		.12	.24	.32	.39			
1	.05	.10	.15	.25		.05	.14	.28	.32			

Table: The selection percentage and the percentage of patients treated at each dose combination (shown as the subscripts) for scenario 2.

	Agent A											
Agent		Propos	ed desigr	ı		Greedy design						
В	1	2	3	4		1	2	3	4			
4	1.62.1	3.23.2	$4.1_{6.4}$	17.0 _{13.7}		2.5 _{1.6}	$3.1_{2.3}$	3.9 _{3.7}	30.1 _{32.0}			
3	$2.5_{2.1}$	$2.8_{4.3}$	$7.1_{9.2}$	$33.1_{18.5}$		$2.4_{2.3}$	$3.1_{2.3}$	$9.0_{13.9}$	$17.9_{9.3}$			
2	$0.7_{1.6}$	$1.5_{7.8}$	$3.4_{5.3}$	$9.6_{8.5}$		$0.8_{0.9}$	$1.1_{9.0}$	$3.0_{2.6}$	$8.2_{5.1}$			
1	$0.3_{7.3}$	$0.8_{1.6}$	$2.5_{2.7}$	$6.0_{5.7}$		$0.1_{7.7}$	$0.6_{0.9}$	$2.2_{2.3}$	$7.1_{3.9}$			

Table: Scenario 3

-	Agent A										
Agent	Tox	cicity p	robab	ility	Effi	сасу р	robab	ility			
В	1	2	3	4	1	2	3	4			
4	.17	.25	.45	.55	.60	.35	.32	.28			
3	.12	.16	.25	.43	.42	.30	.28	.25			
2	.08	.10	.19	.22	.35	.28	.22	.20			
1	.05	.08	.12	.18	.25	.23	.19	.16			

Table: The selection percentage and the percentage of patients treated at each dose combination (shown as the subscripts) for scenario 3.

	Agent A										
	1	Proposed	design		Greedy design						
В	1	2	3	4	1	2	3	4			
4	46.3 _{18.9}	6.8 _{5.5}	3.4 _{5.2}	1.36.1	39.1 _{13.8}	$7.1_{5.2}$	3.333.6	$0.9_{9.8}$			
3	$7.8_{5.5}$	$2.7_{5.0}$	$3.1_{8.6}$	$2.2_{4.5}$	$7.3_{3.9}$	$2.6_{2.9}$	$3.5_{13.2}$	$2.9_{3.9}$			
2	$5.3_{5.0}$	$1.9_{8.2}$	$1.5_{4.5}$	$3.1_{3.4}$	$3.9_{2.7}$	$3.0_{12.0}$	$1.8_{2.5}$	$3.9_{3.6}$			
_1	5.5 _{10.2}	$2.3_{3.6}$	$1.7_{2.7}$	2.9 _{3.0}	8.6 _{16.1}	$2.5_{2.0}$	2.5 _{1.8}	4.9 _{2.9}			

Conclusions

- Our proposed design explicitly accounts for the unique features of the biological agents, i.e., dose-efficacy and -toxicity relationships may take non-monotonic patterns.
- The proposed design adaptively encourages dose exploration in the two-dimensional dose space.
- Our design identifies the BODC with substantially higher selection percentage and allocates more patients to the target dose combination than the greedy design.
- In the case that efficacy plateaus, a similar change-line model can be used.

Reference

Cai, C., Yuan, Y. and Ji, Y. (2014) A Bayesian Phase I/II
Design for Oncology Clinical Trials of Combining Biological
Agents. Journal of the Royal Statistical Society: Series C, 63,
159-173.

Thank you!