Statistical Input into Improving Data Quality: the Impact on Respiratory Endpoints in a COPD Trial

Nick Cowans and Abby Fuller

Veramed Limited

13 November 2015

Overview

- Data cleaning benefits from involvement from statisticians
- Our experience in SUMMIT
 - COPD Exacerbations
 - FEV1
- Impact on endpoints

What are we trying to do?

- Clinical trials want to answer a set of questions
- Does drug affect:
 - Mortality
 - Rate of decline in FEV1
 - Rate of moderate/severe COPD exacerbations
- Need reliable data for statistical analysis

Data Cleaning

• Process:

- Identify data issues
- Clean data via querying sites

Issues:

- Vast quantities can't clean everything
- Use rules based upon individual data points
- Might not think longitudinally or of impact on statistical analysis of endpoints

Stats Contribution

- Clean data that will have an effect on statistical analysis of endpoint
- Design novel visual methods to demonstrate effect unusual data was having on analyses
- Build a close relationship with clinical and CRO

<u>S</u>tudy to <u>Understand</u> <u>Mortality</u> and <u>MorbidITy</u> in COPD

- >16,000 subjects with moderate COPD and cardiovascular history or risk
- Primary endpoint: Survival
- Other endpoints involved FEV1 and COPD exacerbations

SUMMIT Timelines

Over 4 years of data collection

Study Process during Data Collection

- >16000 subjects
- >1300 Sites
- 43 Countries

COPD Exacerbations

• Protocol defined:

Adverse event of worsening of symptoms of COPD requiring Antibiotics or Systemic Corticosteroids (moderate) or hospitalisation (severe)

- Endpoints: *Rates* and *Time to First*
- Collected on adverse event CRF page:

"Did this AE meet the definition of a moderate / severe COPD exacerbation?"

Overlapping Exacerbations

Subject: 123456, Site: 12345 Investigator: J DOE, Country: USA Rand date: 04SEP2011, Status: On-treatment AE Ref: Duration (days): 11 2.5. **Bronchitis** 11 2.4. Exacerbation of COPD 31MAR2012 10APR2012 Date

Close Exacerbations

Subject: 654321, Site: 54321 Investigator: J SMITH, Country: UK Rand date: 17JAN2012, Status: Withdrawn (03NOV2013)

Missing Adverse Event

- Concomitant Medication page of CRF: "Was this medication taken for a COPD exacerbation?"
- Answered 'Yes' when antibiotic or systemic corticosteroid entered
- ... but no AE marked as a moderate or severe COPD exacerbation

Impact on COPD Exacerbation Endpoints

- Overlapping COPD exacerbations would
 - Falsely increase COPD exacerbation rates
- Missing COPD exacerbations would
 - Falsely decrease COPD exacerbation rates
 - Could falsely **push back in time** first event in time to first analysis

FEV1

- Endpoint: Forced Expiratory Volume in 1 second
- Measured on-treatment only
- Analyses:
 - Secondary Rate of decline in FEV1,
 - Sensitivity Differences in rate of Decline using Individual Regression Slopes,
 - **Tertiary** Change from baseline FEV1

Extreme FEV1 Slopes

e

FEV1 checks

- Values within specified ranges.
- Difference from Baseline.

- DM checks are limited more statistical checks required. e.g.:
 - Subjects SD within specified range
 - % change between visits
 - Individual Slopes less than specified value.

FEV1 Profile Review Tool

FEV1 Profile Review Tool

NOTE: Blue square represents baseline value

Comments:

Please review data at last visit. Reduction in FEV1 is not consistent with normal rate of decline for subject.

PI Comments & Signature:

veramed

Impact on Analysis - An Example Simulation

- Simulate normally distributed FEV1 data N(1600, 400)
- Trt A 1000 subjects, each subject decrease of N(10, 20) per 3 months.
- Trt B 1000 subjects, each subject decrease of N(6, 20) per 3 months.
- Constant withdrawal of 4% of remaining subjects per 3 month period.
- Set limits of 300mL lower and 4000mL upper to remove invalid values.

Impact on Analysis - An Example Simulation

Simulation	Normally Distributed data		Normally distributed data with 10% of slopes replaced with extreme slopes < -750mL/yr		Normally distributed data with 5% of slopes replaced with extreme slopes < -1500mL/yr	
Model	Random Coefficients Model	Individual Slopes (equally weighted)	Random Coefficients Model	Individual Slopes (equally weighted)	Random Coefficients Model	Individual Slopes (equally weighted)
Average Slope mL/yr	Trt A -44 mL/yr Trt B -20 mL/yr	Trt A -44 mL/yr Trt B -21 mL/yr	Trt A -101 mL/yr Trt B -74 mL/yr	Trt A -104 mL/yr Trt B -76 mL/yr	Trt A -118 mL/yr Trt B -94 mL/yr	Trt A -117 mL/yr Trt B -89 mL/yr
Difference between slopes Trt B - Trt A	23	23	24	28	24	28
p-value	<0.001	<0.001	0.042	<0.001	0.457	<0.001

Summary

- Data cleaning benefits from involvement from statisticians
- Statisticians benefit from involvement in Data Cleaning
- In respiratory trials, useful to graphically represent:
 - COPD Exacerbations
 - FEV1
- Impact on endpoints:
 - Improved precision of estimates

Thank you!

Questions?

13 November 2015